Hybrid Shifted Gegenbauer Integral–Pseudospectral Method for Solving Time-Fractional Benjamin–Bona–Mahony–Burgers Equation

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 16 (2025), p. 2678-2698
Autor principal: Elgindy, Kareem T
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This paper introduces a novel hybrid shifted Gegenbauer integral–pseudospectral (HSG-IPS) method to solve the time-fractional Benjamin–Bona–Mahony–Burgers (FBBMB) equation with high accuracy. The approach transforms the equation into a form with only a first-order derivative, which is approximated using a stable shifted Gegenbauer differentiation matrix (SGDM), while other terms are computed with precise quadrature rules. By integrating advanced techniques such as the shifted Gegenbauer pseudospectral method (SGPS), fractional derivative and integral approximations, and barycentric integration matrices, the HSG-IPS method achieves spectral accuracy. Numerical results show it reduces average absolute errors (AAEs) by up to 99.99% compared to methods like Crank–Nicolson linearized difference scheme (CNLDS) and finite integration method using Chebyshev polynomial (FIM-CBS), with computational times as low as 0.04–0.05 s. The method’s stability is improved by avoiding ill-conditioned high-order derivative approximations, and its efficiency is boosted by precomputed matrices and Kronecker product structures. Robust across various fractional orders, the HSG-IPS method offers a powerful tool for modeling wave propagation and nonlinear phenomena in fractional calculus applications.
ISSN:2227-7390
DOI:10.3390/math13162678
Fuente:Engineering Database