Hybrid Shifted Gegenbauer Integral–Pseudospectral Method for Solving Time-Fractional Benjamin–Bona–Mahony–Burgers Equation

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Mathematics vol. 13, no. 16 (2025), p. 2678-2698
מחבר ראשי: Elgindy, Kareem T
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3244045287
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13162678  |2 doi 
035 |a 3244045287 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Elgindy, Kareem T  |u Department of Mathematics and Sciences, College of Humanities and Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; k.elgindy@ajman.ac.ae 
245 1 |a Hybrid Shifted Gegenbauer Integral–Pseudospectral Method for Solving Time-Fractional Benjamin–Bona–Mahony–Burgers Equation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper introduces a novel hybrid shifted Gegenbauer integral–pseudospectral (HSG-IPS) method to solve the time-fractional Benjamin–Bona–Mahony–Burgers (FBBMB) equation with high accuracy. The approach transforms the equation into a form with only a first-order derivative, which is approximated using a stable shifted Gegenbauer differentiation matrix (SGDM), while other terms are computed with precise quadrature rules. By integrating advanced techniques such as the shifted Gegenbauer pseudospectral method (SGPS), fractional derivative and integral approximations, and barycentric integration matrices, the HSG-IPS method achieves spectral accuracy. Numerical results show it reduces average absolute errors (AAEs) by up to 99.99% compared to methods like Crank–Nicolson linearized difference scheme (CNLDS) and finite integration method using Chebyshev polynomial (FIM-CBS), with computational times as low as 0.04–0.05 s. The method’s stability is improved by avoiding ill-conditioned high-order derivative approximations, and its efficiency is boosted by precomputed matrices and Kronecker product structures. Robust across various fractional orders, the HSG-IPS method offers a powerful tool for modeling wave propagation and nonlinear phenomena in fractional calculus applications. 
653 |a Accuracy 
653 |a Propagation 
653 |a Calculus 
653 |a Viscosity 
653 |a Quadratures 
653 |a Polynomials 
653 |a Chebyshev approximation 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Wave propagation 
653 |a Methods 
653 |a Error reduction 
653 |a Fractional calculus 
653 |a Dengue fever 
653 |a Viscoelasticity 
653 |a Burgers equation 
653 |a Nonlinear phenomena 
653 |a Derivatives 
653 |a Efficiency 
653 |a Integrals 
653 |a Spectral methods 
773 0 |t Mathematics  |g vol. 13, no. 16 (2025), p. 2678-2698 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244045287/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244045287/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244045287/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch