Feasibility of Conditional Variational Autoencoders for Phase-Averaged Synthetic Time Series

Uloženo v:
Podrobná bibliografie
Vydáno v:European Conference on Cyber Warfare and Security (Jun 2025), p. 614-622
Hlavní autor: Rüb, Matthias
Další autoři: Grüber, Jens, Schotten, Hans
Vydáno:
Academic Conferences International Limited
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:In cybersecurity, synthetic data is beneficial for testing, training, and enhancing Al-driven defense systems without compromising sensitive information. Critical sectors like telecommunications, finance, energy, and healthcare generate vast amounts of time-series data, often requiring reduction methods such as phase-averaging to manage scale. However, this can obscure essential features, impacting anomaly detection and threat modeling. This study explores whether conditional Variational Autoencoders (cVAEs) can generate high-quality synthetic data when given only phase-averaged time series for training. Results on a biometric use-case show that cVAEs preserve intrinsic properties of reduced data, making it usable for classification and to a more restricted degree as training data in downstream cybersecurity applications.
Zdroj:Political Science Database