Fluid-derived lattices for unbiased modeling of bacterial colony growth

Salvato in:
Dettagli Bibliografici
Pubblicato in:PLoS One vol. 20, no. 8 (Aug 2025), p. e0330491
Autore principale: Verhoef, Bryan
Altri autori: Hermsen, Rutger, de Graaf, Joost
Pubblicazione:
Public Library of Science
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Abstract:Bacterial colonies can form a wide variety of shapes and structures based on ambient and internal conditions. To help understand the mechanisms that determine the structure of and the diversity within these colonies, various numerical modeling techniques have been applied. The most commonly used ones are continuum models, agent-based models, and lattice models. Continuum models are usually computationally fast, but disregard information at the level of the individual, which can be crucial to understanding diversity in a colony. Agent-based models resolve local details to a greater level, but are computationally costly. Lattice-based approaches strike a balance between these two limiting cases. However, this is known to come at the price of introducing undesirable artifacts into the structure of the colonies. For instance, square lattices tend to produce square colonies even where an isotropic shape is expected. Here, we aim to overcome these limitations and we therefore study lattice-induced orientational symmetry in a class of hybrid numerical methods that combine aspects of lattice-based and continuum descriptions. We characterize these artifacts and show that they can be circumvented through the use of a disordered lattice which derives from an unstructured fluid. The main advantage of this approach is that the lattice itself does not imbue the colony with a preferential directionality. We demonstrate that our implementation enables the study of colony growth involving millions of individuals within hours of computation time on an ordinary desktop computer, while retaining many of the desirable features of agent-based models. Furthermore, our method can be readily adapted for a wide range of applications, opening up new avenues for studying the formation of colonies with diverse shapes and complex internal interactions.
ISSN:1932-6203
DOI:10.1371/journal.pone.0330491
Fonte:Health & Medical Collection