Fluid-derived lattices for unbiased modeling of bacterial colony growth

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 8 (Aug 2025), p. e0330491
Autor principal: Verhoef, Bryan
Otros Autores: Hermsen, Rutger, de Graaf, Joost
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244812427
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0330491  |2 doi 
035 |a 3244812427 
045 2 |b d20250801  |b d20250831 
084 |a 174835  |2 nlm 
100 1 |a Verhoef, Bryan 
245 1 |a Fluid-derived lattices for unbiased modeling of bacterial colony growth 
260 |b Public Library of Science  |c Aug 2025 
513 |a Journal Article 
520 3 |a Bacterial colonies can form a wide variety of shapes and structures based on ambient and internal conditions. To help understand the mechanisms that determine the structure of and the diversity within these colonies, various numerical modeling techniques have been applied. The most commonly used ones are continuum models, agent-based models, and lattice models. Continuum models are usually computationally fast, but disregard information at the level of the individual, which can be crucial to understanding diversity in a colony. Agent-based models resolve local details to a greater level, but are computationally costly. Lattice-based approaches strike a balance between these two limiting cases. However, this is known to come at the price of introducing undesirable artifacts into the structure of the colonies. For instance, square lattices tend to produce square colonies even where an isotropic shape is expected. Here, we aim to overcome these limitations and we therefore study lattice-induced orientational symmetry in a class of hybrid numerical methods that combine aspects of lattice-based and continuum descriptions. We characterize these artifacts and show that they can be circumvented through the use of a disordered lattice which derives from an unstructured fluid. The main advantage of this approach is that the lattice itself does not imbue the colony with a preferential directionality. We demonstrate that our implementation enables the study of colony growth involving millions of individuals within hours of computation time on an ordinary desktop computer, while retaining many of the desirable features of agent-based models. Furthermore, our method can be readily adapted for a wide range of applications, opening up new avenues for studying the formation of colonies with diverse shapes and complex internal interactions. 
653 |a Simulation 
653 |a Artifacts 
653 |a Numerical models 
653 |a Continuum modeling 
653 |a Colonies 
653 |a Bacteria 
653 |a Lattices 
653 |a Nutrients 
653 |a Personal computers 
653 |a Numerical methods 
653 |a Neighborhoods 
653 |a Mathematical models 
653 |a Agent-based models 
653 |a Morphology 
653 |a Environmental 
700 1 |a Hermsen, Rutger 
700 1 |a de Graaf, Joost 
773 0 |t PLoS One  |g vol. 20, no. 8 (Aug 2025), p. e0330491 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244812427/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3244812427/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244812427/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch