Cooperative Indoor Localization Using Mobile Robot Anchors via Factor Graph Optimization

Salvato in:
Dettagli Bibliografici
Pubblicato in:IEEE Internet of Things Journal vol. 12, no. 22 (2025), p. 31420-31431
Autore principale: Zhou, Baoding
Altri autori: Tang, Mengyuan, Liu, Chengjun, Zhong, Xuanke, He, Hao, Chen, Xi, Song, Jiangbo, Wang, Yafei, Zhang, Xing, Li, Qingquan
Pubblicazione:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Soggetti:
Accesso online:Citation/Abstract
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3246569976
003 UK-CbPIL
022 |a 2327-4662 
024 7 |a 10.1109/JIOT.2025.3574883  |2 doi 
035 |a 3246569976 
045 2 |b d20250101  |b d20251231 
084 |a 267632  |2 nlm 
100 1 |a Zhou, Baoding  |u Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, the State Key Laboratory of Road Engineering in Extreme Environment, and the Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen, China 
245 1 |a Cooperative Indoor Localization Using Mobile Robot Anchors via Factor Graph Optimization 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2025 
513 |a Journal Article 
520 3 |a Reliable indoor localization is crucial for location-based services.Unlike outdoor environments where the Global Navigation Satellite System (GNSS) is prevalent, indoor localization systems employ diverse methods to enhance the accuracy of individual devices. However, these methods face limitations, such as the dependence on pre-existing map data and the necessity of installing anchors. The advancement of the Internet of Things (IoT) and the increasing availability of smart devices have enabled the development of more flexible and dynamic indoor localization solutions. In this article, we propose a novel method to enhance indoor localization through cooperative localization framework. The core concept involves utilizing existing robots as mobile robot anchors to enhance pedestrian localization accuracy through interaction with pedestrians, particularly in environments lacking fixed anchors. We employed a factor graph optimization approach to tightly couple intradevice and interdevice data. This integration dynamically adjusts the inclusion of anchor data based on its quality, thereby minimizing error propagation. The experimental results demonstrate that the localization accuracy of our proposed method better than extend Kalman filter algorithms, emphasizing the potential of mobile IoT devices in indoor localization systems. 
653 |a Accuracy 
653 |a Robots 
653 |a Internet of Things 
653 |a Localization 
653 |a Indoor navigation 
653 |a Pedestrians 
653 |a Location based services 
653 |a Kalman filters 
653 |a Optimization 
653 |a Global navigation satellite system 
653 |a Algorithms 
700 1 |a Tang, Mengyuan  |u College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China 
700 1 |a Liu, Chengjun  |u Sinopec Beidou Operation Service Center, and the China-Spacenet Satellite Telecom Company Ltd., Nanjing, China 
700 1 |a Zhong, Xuanke  |u College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China 
700 1 |a He, Hao  |u College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China 
700 1 |a Chen, Xi  |u College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China 
700 1 |a Song, Jiangbo  |u College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China 
700 1 |a Wang, Yafei  |u College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou, China 
700 1 |a Zhang, Xing  |u School of Architecture and Urban Planning, the Guangdong Key Laboratory of Urban Informatics, the MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, and the Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Shenzhen University, Shenzhen, China 
700 1 |a Li, Qingquan  |u Department of Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen, China 
773 0 |t IEEE Internet of Things Journal  |g vol. 12, no. 22 (2025), p. 31420-31431 
786 0 |d ProQuest  |t ABI/INFORM Trade & Industry 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3246569976/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch