A Time-Continuous Model for an Untreated HIV-Infection and a Novel Non-Standard Finite-Difference-Method for Its Discretization

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Computer Modeling in Engineering & Sciences vol. 144, no. 2 (2025), p. 2191-2230
Egile nagusia: Wacker, Benjamin
Beste egile batzuk: Schlüter, Jan Christian
Argitaratua:
Tech Science Press
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3246599371
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.32604/cmes.2025.067397  |2 doi 
035 |a 3246599371 
045 2 |b d20250101  |b d20251231 
100 1 |a Wacker, Benjamin  |u Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, Merseburg, 06217, Germany 
245 1 |a A Time-Continuous Model for an Untreated HIV-Infection and a Novel Non-Standard Finite-Difference-Method for Its Discretization 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a In this work, we re-investigate a classical mathematical model of untreated HIV infection suggested by Kirschner and introduce a novel non-standard finite-difference method for its numerical solution. As our first contribution, we establish non-negativity, boundedness of some solution components, existence globally in time, and uniqueness on a time interval for an arbitrary for the time-continuous problem which extends known results of Kirschner’s model in the literature. As our second analytical result, we establish different equilibrium states and examine their stability properties in the time-continuous setting or discuss some numerical tools to evaluate this question. Our third contribution is the formulation of a non-standard finite-difference method which preserves non-negativity, boundedness of some time-discrete solution components, equilibria, and their stabilities. As our final theoretical result, we prove linear convergence of our non-standard finite-difference-formulation towards the time-continuous solution. Conclusively, we present numerical examples to illustrate our theoretical findings. 
653 |a Mathematical analysis 
653 |a Finite difference method 
653 |a Human immunodeficiency virus--HIV 
653 |a Infections 
653 |a Mathematical models 
653 |a Epidemiology 
653 |a Ordinary differential equations 
700 1 |a Schlüter, Jan Christian  |u Faculty of Management, Social Work and Construction, HAWK, Haarmannplatz 3, Holzminden, 37603, Germany, Computational Epidemiology and Public Health Research Group, Institute for Medical Epidemiology, Biometrics and Informatics, Interdisciplinary Center for Health Sciences, Martin Luther University Halle-Wittenberg, Magdeburger Str. 8, Halle, 06112, Germany 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 144, no. 2 (2025), p. 2191-2230 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3246599371/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3246599371/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch