Detecting entanglement and nonlocality with minimum observable length
Guardado en:
| Publicado en: | New Journal of Physics vol. 27, no. 9 (Sep 2025), p. 094503 |
|---|---|
| Autor principal: | |
| Otros Autores: | , |
| Publicado: |
IOP Publishing
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Quantum entanglement and nonlocality are foundational to quantum technologies, driving quantum computation, communication, and cryptography innovations. To benchmark the capabilities of these quantum techniques, efficient detection and accurate quantification methods are indispensable. This paper examines the concept ‘detection length’—a metric that quantifies the minimum number of simultaneously measured particles required to detect entanglement or nonlocality. We extend the detection length framework to encompass various entanglement categories and nonlocality phenomena, providing a comprehensive analytical model to determine detection lengths for specified forms of entanglement. Furthermore, we exploit semidefinite programming techniques to design entanglement witnesses and Bell’s inequalities tailored to specific minimal detection lengths, offering an upper bound for detection lengths in given states. By assessing the noise robustness of these witnesses, we demonstrate that witnesses with shorter detection lengths can exhibit superior performance under certain conditions. |
|---|---|
| ISSN: | 1367-2630 |
| DOI: | 10.1088/1367-2630/adfe0e |
| Fuente: | Publicly Available Content Database |