Detecting entanglement and nonlocality with minimum observable length

Salvato in:
Dettagli Bibliografici
Pubblicato in:New Journal of Physics vol. 27, no. 9 (Sep 2025), p. 094503
Autore principale: Chen, Zhuo
Altri autori: Shi, Fei, Zhao, Qi
Pubblicazione:
IOP Publishing
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3247077162
003 UK-CbPIL
022 |a 1367-2630 
024 7 |a 10.1088/1367-2630/adfe0e  |2 doi 
035 |a 3247077162 
045 2 |b d20250901  |b d20250930 
100 1 |a Chen, Zhuo  |u Institute for Interdisciplinary Information Sciences, Tsinghua University , Beijing 100084, People’s Republic of China 
245 1 |a Detecting entanglement and nonlocality with minimum observable length 
260 |b IOP Publishing  |c Sep 2025 
513 |a Journal Article 
520 3 |a Quantum entanglement and nonlocality are foundational to quantum technologies, driving quantum computation, communication, and cryptography innovations. To benchmark the capabilities of these quantum techniques, efficient detection and accurate quantification methods are indispensable. This paper examines the concept ‘detection length’—a metric that quantifies the minimum number of simultaneously measured particles required to detect entanglement or nonlocality. We extend the detection length framework to encompass various entanglement categories and nonlocality phenomena, providing a comprehensive analytical model to determine detection lengths for specified forms of entanglement. Furthermore, we exploit semidefinite programming techniques to design entanglement witnesses and Bell’s inequalities tailored to specific minimal detection lengths, offering an upper bound for detection lengths in given states. By assessing the noise robustness of these witnesses, we demonstrate that witnesses with shorter detection lengths can exhibit superior performance under certain conditions. 
653 |a Quantum computing 
653 |a Semidefinite programming 
653 |a Quantum entanglement 
653 |a Bell's inequality 
653 |a Upper bounds 
653 |a Cryptography 
653 |a Hypothesis testing 
700 1 |a Shi, Fei  |u QICI Quantum Information and Computation Initiative, School of Computing and Data Science, The University of Hong Kong , Pokfulam Road, Hong Kong Special Administrative Region of China, People’s Republic of China 
700 1 |a Zhao, Qi  |u QICI Quantum Information and Computation Initiative, School of Computing and Data Science, The University of Hong Kong , Pokfulam Road, Hong Kong Special Administrative Region of China, People’s Republic of China 
773 0 |t New Journal of Physics  |g vol. 27, no. 9 (Sep 2025), p. 094503 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247077162/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3247077162/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch