Toward artificial intelligence in dental prosthesis planning — a preliminary in-silico feasibility study

Guardado en:
Detalles Bibliográficos
Publicado en:BMC Oral Health vol. 25 (2025), p. 1-11
Autor principal: Michael del Hougne
Otros Autores: Philipp del Hougne, Isabella Di Lorenzo, Höhne, Christian, Schrenker, Johannes, Schmitter, Marc
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3247129133
003 UK-CbPIL
022 |a 1472-6831 
024 7 |a 10.1186/s12903-025-06778-6  |2 doi 
035 |a 3247129133 
045 2 |b d20250101  |b d20251231 
084 |a 58473  |2 nlm 
100 1 |a Michael del Hougne 
245 1 |a Toward artificial intelligence in dental prosthesis planning — a preliminary in-silico feasibility study 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundDental prosthesis planning is a multi-faceted and nuanced process of conceiving individual treatment plans based on dental findings and in line with established treatment guidelines. The aim of this study was to assess whether an artificial neural network (ANN) provided with sufficient training data could approximate this process.MethodsDental prosthesis planning was abstracted as a mapping from dental findings to choices of dental prosthesis. The problem was framed as a multi-output multi-class classification. An ANN was trained via supervised learning to approximate dental prosthesis planning based on synthetic datasets of dental findings and corresponding prosthesis choices. The accuracy on unseen test data was examined as a function of the ANN’s random initializations, the training set sizes, and the ANN architecture.ResultsWithin the scope and limitations of this study, the ANN achieved an accuracy of 99.51% (± 0.15).ConclusionsThe ability of ANNs to learn dental prosthesis planning was confirmed within the limitations of this preliminary in-silico study. The findings of this study corroborate that ANNs have the potential to support clinicians by providing automated recommendations for choices of dental prosthesis consistent with relevant rules, ultimately supporting and enhancing clinicians’ decision making. Moreover, such ANNs may, in principle, enable advanced patient self-assessment of treatment needs and improve patient care in prosthodontics. 
610 4 |a Python Software Foundation 
653 |a Prosthodontics 
653 |a Software 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Prostheses 
653 |a Planning 
653 |a Neural networks 
653 |a Neurosciences 
653 |a Dentures 
653 |a Automation 
653 |a Feasibility studies 
653 |a Python 
653 |a Teeth 
653 |a Dentists 
653 |a Dental prosthetics 
653 |a Decision making 
653 |a Self-assessment 
700 1 |a Philipp del Hougne 
700 1 |a Isabella Di Lorenzo 
700 1 |a Höhne, Christian 
700 1 |a Schrenker, Johannes 
700 1 |a Schmitter, Marc 
773 0 |t BMC Oral Health  |g vol. 25 (2025), p. 1-11 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247129133/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3247129133/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3247129133/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch