Review of I–V Electrical Characterization Techniques for Photovoltaic Modules Under Real Installation Conditions
Guardado en:
| Publicado en: | Applied Sciences vol. 15, no. 17 (2025), p. 9300-9349 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | The exploitation and development of photovoltaic (PV) modules faces several technical challenges, including those related to variability in electrical performance under real conditions, such as temperature fluctuations, irradiance variability, and dust accumulation. One solution for evaluating and controlling these performances is to conduct electrical characterization under natural conditions. Many characterization techniques have been developed and proposed in the literature, with the aim of verifying manufacturer performance guarantees and better understanding the behavior of PV modules in their installation environment, where the climatic parameters, such as solar irradiation and temperature, fluctuate constantly. These techniques are based on recognized standards, including those established by the International Electrotechnical Commission (IEC) and American Society for Testing and Materials (ASTM). They are also based on methods of transposing basic electrical parameters, allowing the prediction of the performance of modules under various environmental conditions. In this work, a classification and a critical analysis of the main methods of electrical characterization were undertaken, highlighting their respective advantages and disadvantages. The experimental protocols used to evaluate the impact of environmental parameters on the performance of PV modules were examined in detail. |
|---|---|
| ISSN: | 2076-3417 |
| DOI: | 10.3390/app15179300 |
| Fuente: | Publicly Available Content Database |