Settlement Characteristics and Control Parameters for the Integrated Construction of Large-Section Underground Structures and Airport Terminals: A Case Study

Na minha lista:
Detalhes bibliográficos
Publicado no:Buildings vol. 15, no. 17 (2025), p. 3139-3159
Autor principal: Zhang Rongzhen
Outros Autores: Liu, Wei, Wei Zekun, Han, Jianyong, Shao Guangbiao, Li Shenao
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3249675905
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15173139  |2 doi 
035 |a 3249675905 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Zhang Rongzhen  |u School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China 
245 1 |a Settlement Characteristics and Control Parameters for the Integrated Construction of Large-Section Underground Structures and Airport Terminals: A Case Study 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Settlement control for tunnel–terminal co-construction projects remains undefined, despite the growing trend of integrating multiple transportation modes within large-scale transport hubs. This study investigates a large underground structure passing beneath an airport terminal, combining field investigations, statistical analyses, and finite element simulations to examine differential settlement behavior under non-uniform loading conditions. The key contribution of this work is the proposal of a differential settlement control standard, defined by the tangent of the rotation angle between adjacent column foundations, with a recommended value of 1/625. Case analysis at cross-section E–E shows that the measured maximum tangent rotation angle was 1/839, corresponding to base slab settlements of 40.5 mm and 33.1 mm for the high-speed railway and metro structures, respectively. Application of the proposed 1/625 criterion yields allowable maximum base slab settlements of 55.28 mm for the high-speed railway and 44.83 mm for the metro, with differential settlement limits of 7.5 mm and 3.13 mm. Numerical simulations confirm the validity of this standard, ensuring the structural integrity of co-constructed systems and providing practical guidance for future airport terminal–tunnel integration projects. 
651 4 |a Beijing China 
651 4 |a Yellow River 
651 4 |a China 
653 |a Standards 
653 |a Investigations 
653 |a Underground structures 
653 |a Airport expansion 
653 |a Railway engineering 
653 |a Rotation 
653 |a Airport terminals 
653 |a High speed rail 
653 |a Statistical analysis 
653 |a Field investigations 
653 |a Project engineering 
653 |a Differential settlement 
653 |a Tunnel construction 
653 |a Computer simulation 
653 |a Transportation terminals 
653 |a Construction industry 
653 |a Simulation 
653 |a Construction 
653 |a Field tests 
653 |a Structural integrity 
653 |a Deformation 
653 |a Reinforced concrete 
653 |a Shear strength 
700 1 |a Liu, Wei  |u China Railway No. 10 Engineering Group Urban Construction Co., Ltd., Yantai 264000, China 
700 1 |a Wei Zekun  |u China Railway No. 10 Engineering Group Urban Construction Co., Ltd., Yantai 264000, China 
700 1 |a Han, Jianyong  |u School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China 
700 1 |a Shao Guangbiao  |u School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China 
700 1 |a Li Shenao  |u School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China 
773 0 |t Buildings  |g vol. 15, no. 17 (2025), p. 3139-3159 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249675905/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249675905/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249675905/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch