Settlement Characteristics and Control Parameters for the Integrated Construction of Large-Section Underground Structures and Airport Terminals: A Case Study
Guardat en:
| Publicat a: | Buildings vol. 15, no. 17 (2025), p. 3139-3159 |
|---|---|
| Autor principal: | |
| Altres autors: | , , , , |
| Publicat: |
MDPI AG
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
| Resum: | Settlement control for tunnel–terminal co-construction projects remains undefined, despite the growing trend of integrating multiple transportation modes within large-scale transport hubs. This study investigates a large underground structure passing beneath an airport terminal, combining field investigations, statistical analyses, and finite element simulations to examine differential settlement behavior under non-uniform loading conditions. The key contribution of this work is the proposal of a differential settlement control standard, defined by the tangent of the rotation angle between adjacent column foundations, with a recommended value of 1/625. Case analysis at cross-section E–E shows that the measured maximum tangent rotation angle was 1/839, corresponding to base slab settlements of 40.5 mm and 33.1 mm for the high-speed railway and metro structures, respectively. Application of the proposed 1/625 criterion yields allowable maximum base slab settlements of 55.28 mm for the high-speed railway and 44.83 mm for the metro, with differential settlement limits of 7.5 mm and 3.13 mm. Numerical simulations confirm the validity of this standard, ensuring the structural integrity of co-constructed systems and providing practical guidance for future airport terminal–tunnel integration projects. |
|---|---|
| ISSN: | 2075-5309 |
| DOI: | 10.3390/buildings15173139 |
| Font: | Engineering Database |