Efficient Target Assignment via Binarized SHP Path Planning and Plasticity-Aware RL in Urban Adversarial Scenarios
Guardat en:
| Publicat a: | Applied Sciences vol. 15, no. 17 (2025), p. 9630-9654 |
|---|---|
| Autor principal: | |
| Altres autors: | , , , , , , , |
| Publicat: |
MDPI AG
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3249676015 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2076-3417 | ||
| 024 | 7 | |a 10.3390/app15179630 |2 doi | |
| 035 | |a 3249676015 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231338 |2 nlm | ||
| 100 | 1 | |a Ding Xiyao |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) | |
| 245 | 1 | |a Efficient Target Assignment via Binarized SHP Path Planning and Plasticity-Aware RL in Urban Adversarial Scenarios | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Accurate and feasible target assignment in an urban environment without road networks remains challenging. Existing methods exhibit critical limitations: computational inefficiency preventing real-time decision-making requirements and poor cross-scenario generalization, yielding task-specific policies that lack adaptability. To achieve efficient target assignment in urban adversarial scenarios, we propose an efficient traversable path generation method requiring only binarized images, along with four key constraint models serving as optimization objectives. Moreover, we model this optimization problem as a Markov decision process (MDP) and introduce the generalization sequential proximal policy optimization (GSPPO) algorithm within the reinforcement learning (RL) framework. Specifically, GSPPO integrates an exploration history representation module (EHR) and a neuron-specific plasticity enhancement module (NPE). EHR incorporates exploration history into the policy learning loop, which significantly improves learning efficiency. To mitigate the plasticity loss in neural networks, we propose an NPE module, which boosts the model’s representational capability and generalization across diverse tasks. Experiments demonstrate that our approach reduces planning time by four orders of magnitude compared to the online planning method. Against the benchmark algorithm, it achieves 94.16% higher convergence performance, 33.54% shorter assignment path length, 51.96% lower threat value, and 40.71% faster total time. Our approach supports real-time military reconnaissance and will also facilitate rescue operations in complex cities. | |
| 653 | |a Mathematical programming | ||
| 653 | |a Unmanned aerial vehicles | ||
| 653 | |a Integer programming | ||
| 653 | |a Linear programming | ||
| 653 | |a Dynamic programming | ||
| 653 | |a Adaptability | ||
| 653 | |a Heuristic | ||
| 653 | |a Branch & bound algorithms | ||
| 653 | |a Genetic algorithms | ||
| 653 | |a Decision making | ||
| 653 | |a Optimization | ||
| 653 | |a Efficiency | ||
| 700 | 1 | |a Chen, Hao |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) | |
| 700 | 1 | |a Wang, Yu |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) | |
| 700 | 1 | |a Wei Dexing |u People’s Liberation Army Troop 32022, Guangzhou 510075, China; wdxing25@alumni.nudt.edu.cn | |
| 700 | 1 | |a Fu Ke |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) | |
| 700 | 1 | |a Liu Linyue |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) | |
| 700 | 1 | |a Benke, Gao |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) | |
| 700 | 1 | |a Liu, Quan |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) | |
| 700 | 1 | |a Huang, Jian |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) | |
| 773 | 0 | |t Applied Sciences |g vol. 15, no. 17 (2025), p. 9630-9654 | |
| 786 | 0 | |d ProQuest |t Publicly Available Content Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3249676015/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3249676015/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3249676015/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |