Efficient Target Assignment via Binarized SHP Path Planning and Plasticity-Aware RL in Urban Adversarial Scenarios

Guardat en:
Dades bibliogràfiques
Publicat a:Applied Sciences vol. 15, no. 17 (2025), p. 9630-9654
Autor principal: Ding Xiyao
Altres autors: Chen, Hao, Wang, Yu, Wei Dexing, Fu Ke, Liu Linyue, Benke, Gao, Liu, Quan, Huang, Jian
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3249676015
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15179630  |2 doi 
035 |a 3249676015 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Ding Xiyao  |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) 
245 1 |a Efficient Target Assignment via Binarized SHP Path Planning and Plasticity-Aware RL in Urban Adversarial Scenarios 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate and feasible target assignment in an urban environment without road networks remains challenging. Existing methods exhibit critical limitations: computational inefficiency preventing real-time decision-making requirements and poor cross-scenario generalization, yielding task-specific policies that lack adaptability. To achieve efficient target assignment in urban adversarial scenarios, we propose an efficient traversable path generation method requiring only binarized images, along with four key constraint models serving as optimization objectives. Moreover, we model this optimization problem as a Markov decision process (MDP) and introduce the generalization sequential proximal policy optimization (GSPPO) algorithm within the reinforcement learning (RL) framework. Specifically, GSPPO integrates an exploration history representation module (EHR) and a neuron-specific plasticity enhancement module (NPE). EHR incorporates exploration history into the policy learning loop, which significantly improves learning efficiency. To mitigate the plasticity loss in neural networks, we propose an NPE module, which boosts the model’s representational capability and generalization across diverse tasks. Experiments demonstrate that our approach reduces planning time by four orders of magnitude compared to the online planning method. Against the benchmark algorithm, it achieves 94.16% higher convergence performance, 33.54% shorter assignment path length, 51.96% lower threat value, and 40.71% faster total time. Our approach supports real-time military reconnaissance and will also facilitate rescue operations in complex cities. 
653 |a Mathematical programming 
653 |a Unmanned aerial vehicles 
653 |a Integer programming 
653 |a Linear programming 
653 |a Dynamic programming 
653 |a Adaptability 
653 |a Heuristic 
653 |a Branch & bound algorithms 
653 |a Genetic algorithms 
653 |a Decision making 
653 |a Optimization 
653 |a Efficiency 
700 1 |a Chen, Hao  |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) 
700 1 |a Wang, Yu  |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) 
700 1 |a Wei Dexing  |u People’s Liberation Army Troop 32022, Guangzhou 510075, China; wdxing25@alumni.nudt.edu.cn 
700 1 |a Fu Ke  |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) 
700 1 |a Liu Linyue  |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) 
700 1 |a Benke, Gao  |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) 
700 1 |a Liu, Quan  |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) 
700 1 |a Huang, Jian  |u College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; dingxiyao19@nudt.edu.cn (X.D.); wangyu@nudt.edu.cn (Y.W.); fuke@nudt.edu.cn (K.F.); liulinyue24@nudt.edu.cn (L.L.); gaobenke23@nudt.edu.cn (B.G.); liuquan@nudt.edu.cn (Q.L.) 
773 0 |t Applied Sciences  |g vol. 15, no. 17 (2025), p. 9630-9654 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249676015/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249676015/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249676015/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch