The Feasibility of Artificial Intelligence and Raman Spectroscopy for Determining the Authenticity of Minced Meat

Uloženo v:
Podrobná bibliografie
Vydáno v:Foods vol. 14, no. 17 (2025), p. 3084-3099
Hlavní autor: Nedeljkovic Aleksandar
Další autoři: Maggiolino Aristide, Rocchetti Gabriele, Sun Weizheng, Heinz, Volker, Tomasevic, Ivana D, Djordjevic Vesna, Tomasevic Igor
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3249685110
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14173084  |2 doi 
035 |a 3249685110 
045 2 |b d20250101  |b d20251231 
084 |a 231462  |2 nlm 
100 1 |a Nedeljkovic Aleksandar  |u Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia 
245 1 |a The Feasibility of Artificial Intelligence and Raman Spectroscopy for Determining the Authenticity of Minced Meat 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Food fraud in meat products presents serious economic and public health challenges, underscoring the need for rapid and reliable detection methods. This study investigates the potential of Raman spectroscopy combined with machine learning to accurately discriminate between pure and mixed minced meat preparations. We evaluated three classification algorithms: Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), and Random Forests (RFs). Raman spectra were collected from 19 distinct samples consisting of different ratios of pork, beef, and lamb minced meat. Our findings suggest that homogenization markedly enhances spectral consistency and classification accuracy. In the pure meat samples case, all three models (SVM, ANN, and RF) achieved notable increases in classification accuracies (from 0.50–0.70 to above 0.85), a dramatic improvement over unhomogenized samples. In more complex homogenized mixtures, SVM delivered the highest performance, achieving an accuracy of up to 0.88 for 50:50 mixtures and 0.86 for multi-ratio samples, often outperforming both ANN and RF. While the underlying interpretation of the classification models remains complex, the findings consistently underscore the critical role of homogenization on model performance. This work demonstrates the robust potential of the Raman spectroscopy-coupled machine learning approach for the rapid and accurate identification of minced meat species. 
610 4 |a HORIBA Ltd 
651 4 |a France 
653 |a Raman spectra 
653 |a Beef 
653 |a Public health 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Classification 
653 |a Food 
653 |a Meat products 
653 |a Homogenization 
653 |a Artificial neural networks 
653 |a Signal processing 
653 |a Pork 
653 |a Data processing 
653 |a Minced meat 
653 |a Machine learning 
653 |a Raman spectroscopy 
653 |a Meat 
653 |a Spectroscopy 
653 |a Learning algorithms 
653 |a Accuracy 
653 |a Spectrum analysis 
653 |a Support vector machines 
653 |a Lasers 
653 |a Fraud 
653 |a Meat industry 
653 |a Mixtures 
653 |a Meat quality 
653 |a Neural networks 
700 1 |a Maggiolino Aristide  |u Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Provinciale per Casamassima Km 3, 70010 Valenzano, Italy; aristide.maggiolino@uniba.it 
700 1 |a Rocchetti Gabriele  |u Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; gabriele.rocchetti@unicatt.it 
700 1 |a Sun Weizheng  |u School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; fewzhsun@scut.edu.cn 
700 1 |a Heinz, Volker  |u DIL German Institute of Food Technologies e.V., Prof.-von-Klitzing-Str. 7, 49610 Quakenbrück, Germany; v.heinz@dil-ev.de 
700 1 |a Tomasevic, Ivana D  |u Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia; ivana.tomasevic@inmes.rs (I.D.T.); 
700 1 |a Djordjevic Vesna  |u Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia; ivana.tomasevic@inmes.rs (I.D.T.); 
700 1 |a Tomasevic Igor  |u Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia 
773 0 |t Foods  |g vol. 14, no. 17 (2025), p. 3084-3099 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249685110/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249685110/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249685110/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch