A Hybrid DST-Accelerated Finite-Difference Solver for 2D and 3D Poisson Equations with Dirichlet Boundary Conditions

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 17 (2025), p. 2776-2793
Autor principal: Pei Jing
Otros Autores: Tong Xiaozhong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3249691809
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13172776  |2 doi 
035 |a 3249691809 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Pei Jing 
245 1 |a A Hybrid DST-Accelerated Finite-Difference Solver for 2D and 3D Poisson Equations with Dirichlet Boundary Conditions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Finite-difference methods are widely used to solve partial differential equations in diverse practical applications. Despite their prevalence, the computational efficiency of these methods encounters limitations due to the need to solve linear equation systems through matrix inversion or iterative solver, which is particularly challenging in scenarios involving high dimensions. The demand for numerical methods with high accuracy and fast computational speed is steadily increasing. To address this challenge, we present an efficient and accurate algorithm for high-dimensional numerical modeling. This approach combines a central finite-difference method with the discrete Sine transform (DST) scheme to solve the Poisson equation under Dirichlet boundary conditions (DBCs). To balance numerical accuracy and computation, the DST scheme is applied along one direction in the 2D case and two directions in the 3D case. This strategy effectively reduces problem complexity while maintaining low computational cost. The hybrid DST-accelerated finite-difference approach substantially lowers the computational cost associated with solving the Poisson equation on large grids. Comprehensive numerical experiments for 2D and 3D Poisson equations with DBCs have been conducted. The obtained numerical results demonstrate that the proposed hybrid method not only significantly reduces the computational expenses, but also maintains the central finite-difference accuracy. 
653 |a Accuracy 
653 |a Partial differential equations 
653 |a Mathematical analysis 
653 |a Fourier transforms 
653 |a Numerical models 
653 |a Finite difference method 
653 |a Computational efficiency 
653 |a Boundary conditions 
653 |a Computing costs 
653 |a Numerical analysis 
653 |a Solvers 
653 |a Linear equations 
653 |a Methods 
653 |a Algorithms 
653 |a Numerical methods 
653 |a Boundary value problems 
653 |a Efficiency 
653 |a Poisson equation 
700 1 |a Tong Xiaozhong 
773 0 |t Mathematics  |g vol. 13, no. 17 (2025), p. 2776-2793 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249691809/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249691809/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249691809/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch