Machine Learning Approaches for Customer Churn Prediction: Balancing Accuracy and Interpretability

Збережено в:
Бібліографічні деталі
Опубліковано в::ProQuest Dissertations and Theses (2025)
Автор: Chen, Jack
Опубліковано:
ProQuest Dissertations & Theses
Предмети:
Онлайн доступ:Citation/Abstract
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Опис
Короткий огляд:The study addresses the problem of customer churn in the telecommunications industry, where retaining existing users is significantly more cost-effective than acquiring new ones. It investigates the application of machine learning techniques for churn prediction using demographic, contractual, service, and billing information. A range of models are evaluated, from interpretable approaches such as Logistic Regression and Decision Trees to advanced methods including Random Forest, Gradient Boosting, Support Vector Machines, and Neural Networks. The analysis emphasizes predictive performance and interpretability, identifies key factors driving churn, and discusses trade-offs among different approaches. The findings provide both methodological insights into the use of machine learning for churn prediction and practical guidance for developing data-driven strategies to improve customer retention.
ISBN:9798293838837
Джерело:ProQuest Dissertations & Theses Global