Evaluating Energy and Visibility Trade-Offs in LEO Satellite Edge Computing for Airplane Detection

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:ProQuest Dissertations and Theses (2025)
Váldodahkki: Kim, Eomji
Almmustuhtton:
ProQuest Dissertations & Theses
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
Govvádus
Abstrákta:This thesis investigates the efficiency of various Low Earth Orbit (LEO) configurations for autonomous airplane detection using onboard edge computing in space. The study evaluates the trade-off between maximizing target visibility—defined as daytime passes suitable for optical detection over Incheon International Airport—and minimizing energy consumption for satellite operations. A baseline Sun-Synchronous Orbit (SSO) is compared against multiple Non-Sun-Synchronous Orbits (NSSOs) with varying inclinations (45°–110°), RAANs, and arguments of perigee. For each configuration, orbital visibility is simulated over 1-day and 7-day windows using Python-based tools with J2 perturbation modeling validated against GMAT. Daytime visibility is filtered using local KST-based illumination constraints. To quantify operational efficiency, a composite scoring system is introduced that aggregates normalized visibility metrics, followed by an energy modeling framework that estimates consumption per image strip and per orbit. The model incorporates realistic assumptions: an optical payload based on KOMPSAT-3 specifications, onboard inference with YOLOv5n on NVIDIA Jetson Xavier NX, and S-band downlink of detection results. A simplified solar generation model evaluates the power budget. The findings reveal that mid-inclination NSSOs (especially at 70°) strike the most effective balance between data yield and energy sustainability. The methodology provides a scalable framework for orbit design tailored to edge-AI missions requiring both high revisit rates and energy efficiency.
ISBN:9798293847969
Gáldu:ProQuest Dissertations & Theses Global