OUTCOME VS. MASTERY: A SEMANTIC ANALYSIS OF CURRICULAR FRAMING IN GRADUATE DATA ANALYTICS PROGRAMS

Uloženo v:
Podrobná bibliografie
Vydáno v:International Journal of Information, Business and Management vol. 17, no. 4 (Nov 2025), p. 1-20
Hlavní autor: Brattin, Rick L
Vydáno:
Educational Research Multimedia & Publications
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3253426301
003 UK-CbPIL
022 |a 2076-9202 
022 |a 2218-046X 
035 |a 3253426301 
045 2 |b d20251101  |b d20251130 
084 |a 229629  |2 nlm 
100 1 |a Brattin, Rick L  |u Information Technology and Cybersecurity, College of Business, Missouri State University, Springfield, MO, USA 
245 1 |a OUTCOME VS. MASTERY: A SEMANTIC ANALYSIS OF CURRICULAR FRAMING IN GRADUATE DATA ANALYTICS PROGRAMS 
260 |b Educational Research Multimedia & Publications  |c Nov 2025 
513 |a Journal Article 
520 3 |a Graduate programs in data analytics differ not only in content but also in how they frame the purpose of analytics education. This study investigates whether business and non-business programs exhibit distinct curricular framing orientations. It hypothesizes that business programs emphasize outcome-oriented framing, presenting analytics as a tool for decision-making and value delivery, while non-business programs emphasize mastery-oriented framing focused on technical depth and methodological rigor. To evaluate this distinction, the study analyzes 1,972 course descriptions from 109 graduate programs using natural language processing techniques capable of identifying semantic similarities in instructional language. The results reveal significant differences in how programs describe the role of analytics, with statistical and validation analyses supporting the hypothesized framing distinction. These findings position framing orientation as a structural feature of curriculum design and provide practical guidance for educators, curriculum developers, and academic leaders seeking to align analytics programs with institutional goals and workforce expectations. 
653 |a Language 
653 |a Semantics 
653 |a Science programs 
653 |a Curricula 
653 |a Graduate studies 
653 |a Analytics 
653 |a Accreditation 
653 |a Business schools 
653 |a Decision making 
653 |a Workforce 
653 |a Design 
653 |a Data analysis 
653 |a Data science 
653 |a Natural language processing 
653 |a Professionals 
653 |a Business analytics 
653 |a Education 
773 0 |t International Journal of Information, Business and Management  |g vol. 17, no. 4 (Nov 2025), p. 1-20 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3253426301/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3253426301/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3253426301/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch