Bridging Heritage Knowledge and Digital Models: An HBIM Integration Framework

Сохранить в:
Библиографические подробности
Опубликовано в::ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences vol. X-M-2-2025 (2025), p. 365-373
Главный автор: Wang, Xi
Другие авторы: Wu, Cong, Zhang, Xiao, Pan, Ruolin
Опубликовано:
Copernicus GmbH
Предметы:
Online-ссылка:Citation/Abstract
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Краткий обзор:Architectural heritage conservation demands the integration of precise physical documentation and interpretative design knowledge, yet current HBIM approaches remain fragmented: ‘scan-to-BIM’ prioritizes geometric accuracy at the expense of semantic richness, while “rule-based reconstruction” emphasizes idealized logic over as-built evidence. To bridge this gap, this study introduces the KSQI paradigm (Knowledge-Semantics-Quantities-Image), a novel framework that systematically connects domain expertise with digital modelling to balance spatial accuracy and architectural semantics. The research develops an as-recognized modelling or semantic-driven modelling through (1) a conservation cycle-guided information indexing system for semantic-driven knowledge integration, (2) a data-model decoupling workflow that teams from different disciplines maintain their working habits, handling data and models separately, then recoupling data-model by BIM team, and (3) a pattern book tooling solution including check forms for hierarchical investigation, algorithm modelling generator. By linking physical attributes (quantities/images) with design logic (semantics/knowledge), KSQI enhances information management, supports iterative knowledge updates, and facilitates informed conservation decisions. Case studies demonstrate its effectiveness in encoding both as-built conditions and historical, traditional design/construction principles, reinforcing the ‘H’ (history/heritage knowledge) in HBIM. This framework advances heritage documentation toward the smart metric survey, ensuring models serve as dynamic, semantically rich assets for conservation, research, dissemination, and digital twin applications.
ISSN:2194-9042
2194-9050
DOI:10.5194/isprs-annals-X-M-2-2025-365-2025
Источник:Engineering Database