Scale‐Aware Evaluation of Complex Mountain Boundary Layer Flow From Observations and Simulations

Guardado en:
Detalles Bibliográficos
Publicado en:Geophysical Research Letters vol. 52, no. 18 (Sep 28, 2025)
Autor principal: Lapo, Karl
Otros Autores: Dipankar, Anurag, Goger, Brigitta
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254461297
003 UK-CbPIL
022 |a 0094-8276 
022 |a 1944-8007 
024 7 |a 10.1029/2025GL116441  |2 doi 
035 |a 3254461297 
045 0 |b d20250928 
084 |a 107510  |2 nlm 
100 1 |a Lapo, Karl  |u Department for Atmospheric and Cryospheric Sciences, Universität Innsbruck, Innsbruck, Austria 
245 1 |a Scale‐Aware Evaluation of Complex Mountain Boundary Layer Flow From Observations and Simulations 
260 |b John Wiley & Sons, Inc.  |c Sep 28, 2025 
513 |a Journal Article 
520 3 |a Boundary layers over complex, mountainous terrain are characterized by multi‐scale, complex flow structures, where the characterization of individual flow modes poses a fundamental challenge. We apply the novel multi‐resolution coherent spatio‐temporal scale separation (mrCOSTS) method to LIDAR observations and numerical data of the velocity components of complex mountain boundary‐layer flow. Using three distinct time scales (turbulent scales, mountain boundary layer, and diurnal scales) the underlying physical processes are explored. Furthermore, we identified the dominant flow patterns for each time scale, for example, down‐ and up‐valley flows, cross‐valley vortices, small‐scale turbulence, and large evening transition eddies. Applying mrCOSTS to simulated velocity components enables us to identify how coherent structures and the flow patterns are represented at various mesh sizes in the model. Using mrCOSTS we trivially retrieved complex dynamics that were previously difficult to resolve, enabling a direct, scale‐aware evaluation between the LIDAR observations and model results. 
651 4 |a Alps 
651 4 |a Japan 
653 |a Flow distribution 
653 |a Turbulence 
653 |a Flow structures 
653 |a Eddies 
653 |a Lidar observations 
653 |a Boundary layers 
653 |a Lidar 
653 |a Topography 
653 |a Fluid flow 
653 |a Boundary layer flow 
653 |a Turbulent flow 
653 |a Valleys 
653 |a Mountains 
653 |a Flow pattern 
653 |a Simulation 
653 |a Atmospheric boundary layer 
653 |a Velocity 
653 |a Turbulent boundary layer 
653 |a Environmental 
700 1 |a Dipankar, Anurag  |u Center for Climate Systems Modeling (C2SM), ETH Zurich, Zurich, Switzerland 
700 1 |a Goger, Brigitta  |u Center for Climate Systems Modeling (C2SM), ETH Zurich, Zurich, Switzerland 
773 0 |t Geophysical Research Letters  |g vol. 52, no. 18 (Sep 28, 2025) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254461297/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254461297/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254461297/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch