The Numerical Solution of Volterra Integral Equations

Guardado en:
Detalles Bibliográficos
Publicado en:Axioms vol. 14, no. 9 (2025), p. 675-705
Autor principal: Junghanns, Peter
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Recently we studied a collocation–quadrature method in weighted <inline-formula>L2</inline-formula> spaces as well as in the space of continuous functions for a Volterra-like integral equation of the form <inline-formula>u(x)−∫αx1h(x−αy)u(y)dy=f(x),0<x<1,</inline-formula> where <inline-formula>h(x)</inline-formula> (with a possible singularity at <inline-formula>x=0</inline-formula>) and <inline-formula>f(x)</inline-formula> are given (in general complex-valued) functions, and <inline-formula>α∈(0,1)</inline-formula> is a fixed parameter. Here, we want to investigate the same method for the case when <inline-formula>α=1.</inline-formula> More precisely, we consider (in general weakly singular) Volterra integral equations of the form <inline-formula>u(x)−∫0xh(x,y)(x−y)κu(y)dy=f(x),0<x<1,</inline-formula> where <inline-formula>κ>−1</inline-formula>, and <inline-formula>h:D⟶C</inline-formula> is a continuous function, <inline-formula>D=(x,y)∈R2:0<y<x<1.</inline-formula> The passage from <inline-formula>0<α<1</inline-formula> to <inline-formula>α=1</inline-formula> and the consideration of more general kernel functions <inline-formula>h(x,y)</inline-formula> make the studies more involved. Moreover, we enhance the family of interpolation operators defining the approximating operators, and, finally, we ask if, in comparison to collocation–quadrature methods, the application of the Nyström method together with the theory of collectively compact operator sequences is possible.
ISSN:2075-1680
DOI:10.3390/axioms14090675
Fuente:Engineering Database