The Tabular Accessibility Dataset: A Benchmark for LLM-Based Web Accessibility Auditing

Guardado en:
Detalles Bibliográficos
Publicado en:Data vol. 10, no. 9 (2025), p. 149-162
Autor principal: Andruccioli Manuel
Otros Autores: Bassi, Barry, Delnevo Giovanni, Salomoni Paola
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This dataset was developed to support research at the intersection of web accessibility and Artificial Intelligence, with a focus on evaluating how Large Language Models (LLMs) can detect and remediate accessibility issues in source code. It consists of code examples written in PHP, Angular, React, and Vue.js, organized into accessible and non-accessible versions of tabular components. A substantial portion of the dataset was collected from student-developed Vue components, implemented using both the Options and Composition APIs. The dataset is structured to enable both a static analysis of source code and a dynamic analysis of rendered outputs, supporting a range of accessibility research tasks. All files are in plain text and adhere to the FAIR principles, with open licensing (CC BY 4.0) and long-term hosting via Zenodo. This resource is intended for researchers and practitioners working on LLM-based accessibility validation, inclusive software engineering, and AI-assisted frontend development. Dataset: https://www.doi.org/10.5281/zenodo.17062188. Dataset License: Creative Commons Attribution 4.0 International
ISSN:2306-5729
DOI:10.3390/data10090149
Fuente:Advanced Technologies & Aerospace Database