The Tabular Accessibility Dataset: A Benchmark for LLM-Based Web Accessibility Auditing
Guardado en:
| Publicado en: | Data vol. 10, no. 9 (2025), p. 149-162 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3254479590 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2306-5729 | ||
| 024 | 7 | |a 10.3390/data10090149 |2 doi | |
| 035 | |a 3254479590 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 100 | 1 | |a Andruccioli Manuel | |
| 245 | 1 | |a The Tabular Accessibility Dataset: A Benchmark for LLM-Based Web Accessibility Auditing | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This dataset was developed to support research at the intersection of web accessibility and Artificial Intelligence, with a focus on evaluating how Large Language Models (LLMs) can detect and remediate accessibility issues in source code. It consists of code examples written in PHP, Angular, React, and Vue.js, organized into accessible and non-accessible versions of tabular components. A substantial portion of the dataset was collected from student-developed Vue components, implemented using both the Options and Composition APIs. The dataset is structured to enable both a static analysis of source code and a dynamic analysis of rendered outputs, supporting a range of accessibility research tasks. All files are in plain text and adhere to the FAIR principles, with open licensing (CC BY 4.0) and long-term hosting via Zenodo. This resource is intended for researchers and practitioners working on LLM-based accessibility validation, inclusive software engineering, and AI-assisted frontend development. Dataset: https://www.doi.org/10.5281/zenodo.17062188. Dataset License: Creative Commons Attribution 4.0 International | |
| 653 | |a Datasets | ||
| 653 | |a Accessibility | ||
| 653 | |a Violations | ||
| 653 | |a Source code | ||
| 653 | |a Static code analysis | ||
| 653 | |a Large language models | ||
| 653 | |a Artificial intelligence | ||
| 653 | |a JavaScript | ||
| 653 | |a Keyboards | ||
| 653 | |a Chatbots | ||
| 653 | |a Semantics | ||
| 700 | 1 | |a Bassi, Barry | |
| 700 | 1 | |a Delnevo Giovanni | |
| 700 | 1 | |a Salomoni Paola | |
| 773 | 0 | |t Data |g vol. 10, no. 9 (2025), p. 149-162 | |
| 786 | 0 | |d ProQuest |t Advanced Technologies & Aerospace Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3254479590/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3254479590/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3254479590/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch |