The Tabular Accessibility Dataset: A Benchmark for LLM-Based Web Accessibility Auditing

Guardado en:
Detalles Bibliográficos
Publicado en:Data vol. 10, no. 9 (2025), p. 149-162
Autor principal: Andruccioli Manuel
Otros Autores: Bassi, Barry, Delnevo Giovanni, Salomoni Paola
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254479590
003 UK-CbPIL
022 |a 2306-5729 
024 7 |a 10.3390/data10090149  |2 doi 
035 |a 3254479590 
045 2 |b d20250101  |b d20251231 
100 1 |a Andruccioli Manuel 
245 1 |a The Tabular Accessibility Dataset: A Benchmark for LLM-Based Web Accessibility Auditing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This dataset was developed to support research at the intersection of web accessibility and Artificial Intelligence, with a focus on evaluating how Large Language Models (LLMs) can detect and remediate accessibility issues in source code. It consists of code examples written in PHP, Angular, React, and Vue.js, organized into accessible and non-accessible versions of tabular components. A substantial portion of the dataset was collected from student-developed Vue components, implemented using both the Options and Composition APIs. The dataset is structured to enable both a static analysis of source code and a dynamic analysis of rendered outputs, supporting a range of accessibility research tasks. All files are in plain text and adhere to the FAIR principles, with open licensing (CC BY 4.0) and long-term hosting via Zenodo. This resource is intended for researchers and practitioners working on LLM-based accessibility validation, inclusive software engineering, and AI-assisted frontend development. Dataset: https://www.doi.org/10.5281/zenodo.17062188. Dataset License: Creative Commons Attribution 4.0 International 
653 |a Datasets 
653 |a Accessibility 
653 |a Violations 
653 |a Source code 
653 |a Static code analysis 
653 |a Large language models 
653 |a Artificial intelligence 
653 |a JavaScript 
653 |a Keyboards 
653 |a Chatbots 
653 |a Semantics 
700 1 |a Bassi, Barry 
700 1 |a Delnevo Giovanni 
700 1 |a Salomoni Paola 
773 0 |t Data  |g vol. 10, no. 9 (2025), p. 149-162 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254479590/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254479590/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254479590/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch