Spatial and Seasonal Characteristics of the Submesoscale Energetics in the Northwest Pacific Subtropical Ocean

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Marine Science and Engineering vol. 13, no. 9 (2025), p. 1691-1713
Autor principal: Fei Yunlong
Otros Autores: Zhang, Shaoqing, Wang, Kaidi, Yu Yangyang, Gao, Yang, Cui, Tong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The spatial and seasonal characteristics of submesoscales in the Northwest Pacific Subtropical Ocean are thoroughly investigated here using a submesoscale-permitting model within a localized multiscale energetics framework, in which three scale windows termed background, mesoscale, and submesoscale are decomposed. It is found that submesoscale energetics are highly geographically inhomogeneous. In the Luzon Strait, baroclinic and barotropic instabilities are the primary mechanisms for generating submesoscale available potential energy (APE) and kinetic energy (KE), and they exhibit no significant seasonal variations. Although buoyancy conversion experiences pronounced seasonal cycles and serves as the main sink of submesoscale APE in winter and spring, its contribution to submesoscale KE is negligible. The major sinks of submesoscale KE are advection, horizontal pressure work, and dissipation. In the Western Boundary Current transition and Subtropical Countercurrent (STCC) interior open ocean zone, submesoscales undergo significant seasonality, with large magnitudes in winter and spring. In spring and winter, baroclinic instability dominates the generation of submesoscale APE via forward cascades, while KE is mainly energized by buoyancy conversion and dissipated by the residual term. Meanwhile, in summer and autumn, submesoscales are considerably weak. Additionally, submesoscale energetics in the Western Boundary Current transition zone are slightly greater than those in the STCC interior open ocean zone, which is attributed to the strengthened straining of the Western Boundary Current and mesoscale eddies.
ISSN:2077-1312
DOI:10.3390/jmse13091691
Fuente:Engineering Database