Spatial and Seasonal Characteristics of the Submesoscale Energetics in the Northwest Pacific Subtropical Ocean

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Marine Science and Engineering vol. 13, no. 9 (2025), p. 1691-1713
Autor principal: Fei Yunlong
Otros Autores: Zhang, Shaoqing, Wang, Kaidi, Yu Yangyang, Gao, Yang, Cui, Tong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254558708
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13091691  |2 doi 
035 |a 3254558708 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Fei Yunlong  |u College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; feiyunlong@stu.ouc.edu.cn 
245 1 |a Spatial and Seasonal Characteristics of the Submesoscale Energetics in the Northwest Pacific Subtropical Ocean 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The spatial and seasonal characteristics of submesoscales in the Northwest Pacific Subtropical Ocean are thoroughly investigated here using a submesoscale-permitting model within a localized multiscale energetics framework, in which three scale windows termed background, mesoscale, and submesoscale are decomposed. It is found that submesoscale energetics are highly geographically inhomogeneous. In the Luzon Strait, baroclinic and barotropic instabilities are the primary mechanisms for generating submesoscale available potential energy (APE) and kinetic energy (KE), and they exhibit no significant seasonal variations. Although buoyancy conversion experiences pronounced seasonal cycles and serves as the main sink of submesoscale APE in winter and spring, its contribution to submesoscale KE is negligible. The major sinks of submesoscale KE are advection, horizontal pressure work, and dissipation. In the Western Boundary Current transition and Subtropical Countercurrent (STCC) interior open ocean zone, submesoscales undergo significant seasonality, with large magnitudes in winter and spring. In spring and winter, baroclinic instability dominates the generation of submesoscale APE via forward cascades, while KE is mainly energized by buoyancy conversion and dissipated by the residual term. Meanwhile, in summer and autumn, submesoscales are considerably weak. Additionally, submesoscale energetics in the Western Boundary Current transition zone are slightly greater than those in the STCC interior open ocean zone, which is attributed to the strengthened straining of the Western Boundary Current and mesoscale eddies. 
651 4 |a Pacific Ocean 
651 4 |a Luzon 
653 |a Kinetic energy 
653 |a Transition zone 
653 |a Eddies 
653 |a Seasonal variation 
653 |a Datasets 
653 |a Potential energy 
653 |a Buoyancy 
653 |a Baroclinic instability 
653 |a Topography 
653 |a Windows (computer programs) 
653 |a Seasonal variations 
653 |a Mesoscale eddies 
653 |a Spring 
653 |a Simulation 
653 |a Spring (season) 
653 |a Winter 
653 |a Mesoscale phenomena 
653 |a Dissipation 
653 |a Ocean circulation 
653 |a Seasonality 
653 |a Barotropic mode 
653 |a Environmental 
700 1 |a Zhang, Shaoqing  |u College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; feiyunlong@stu.ouc.edu.cn 
700 1 |a Wang, Kaidi  |u Qingdao Institute of Marine Meteorology, Chinese Academy of Meteorological Sciences, Qingdao Research Center of Marine Meteorology, Qingdao 266404, China; wangkd@cma.gov.cn 
700 1 |a Yu Yangyang  |u The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; yuyangyang@ouc.edu.cn 
700 1 |a Gao, Yang  |u Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; yanggao@ouc.edu.cn 
700 1 |a Cui, Tong  |u Qingdao Leice Transient Technology Co., Ltd., Qingdao 266100, China; cuitong@leice-lidar.com 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 9 (2025), p. 1691-1713 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254558708/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254558708/fulltextwithgraphics/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254558708/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch