Singularity-Free Fixed-Time Cooperative Tracking Control of Unmanned Surface Vehicles with Model Uncertainties

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Marine Science and Engineering vol. 13, no. 9 (2025), p. 1791-1809
1. Verfasser: Su Yuanbo
Weitere Verfasser: Yu Renhai, Ye Peiyun, Li, Tieshan
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3254561666
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13091791  |2 doi 
035 |a 3254561666 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Su Yuanbo  |u Navigation College, Dalian Maritime University, Dalian 116026, China; yuanbosu2019@163.com (Y.S.); peiyunye2019@gmail.com (P.Y.) 
245 1 |a Singularity-Free Fixed-Time Cooperative Tracking Control of Unmanned Surface Vehicles with Model Uncertainties 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This article addresses the problem of singularity-free fixed-time tracking control for multiple unmanned surface vehicles (USVs) with model uncertainties. To compensate for the uncertain nonlinearities in the multi-USV systems, fuzzy logic approximators are employed to estimate unknown hydrodynamic parameters. By integrating adaptive fixed-time control theory with backstepping methodology, a novel singularity-free fixed-time consensus control scheme is developed, incorporating a error switching mechanism to prevent singularities arising from the differentiation of speed control laws. Through rigorous analysis via fixed-time stability theory, the proposed control scheme guarantees that consensus tracking errors reach a small region around zero within fixed-time. Numerical simulations demonstrate the efficacy of the presented method. 
653 |a Kinematics 
653 |a Singularities 
653 |a Control theory 
653 |a Control algorithms 
653 |a Speed control 
653 |a Communication 
653 |a Tracking control 
653 |a Surface vehicles 
653 |a Fuzzy logic 
653 |a Neural networks 
653 |a Controllers 
653 |a Tracking 
653 |a Design 
653 |a Unmanned vehicles 
653 |a Tracking errors 
653 |a Uncertainty 
653 |a Vehicles 
653 |a Cooperative control 
653 |a Environmental 
700 1 |a Yu Renhai  |u Navigation College, Dalian Maritime University, Dalian 116026, China; yuanbosu2019@163.com (Y.S.); peiyunye2019@gmail.com (P.Y.) 
700 1 |a Ye Peiyun  |u Navigation College, Dalian Maritime University, Dalian 116026, China; yuanbosu2019@163.com (Y.S.); peiyunye2019@gmail.com (P.Y.) 
700 1 |a Li, Tieshan  |u School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; tieshanli@126.com 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 9 (2025), p. 1791-1809 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254561666/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254561666/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254561666/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch