High-Resolution Hogel Image Generation Using GPU Acceleration

Guardado en:
Detalles Bibliográficos
Publicado en:Photonics vol. 12, no. 9 (2025), p. 882-895
Autor principal: Kang Hyunmin
Otros Autores: Kim Byungjoon, Seo Yongduek
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:A holographic stereogram displays reconstructed 3D images by rearranging multiple 2D viewpoint images into small holographic pixels (hogels). However, conventional CPU-based hogel generation processes these images sequentially, causing computation times to soar with as the resolution and number of viewpoints increase, which makes real-time implementation difficult. In this study, we introduce a GPU-accelerated parallel processing method to speed up the generation of high-resolution hogel images and achieve near-real-time performance. Specifically, we implement the pixel-rearrangement algorithm for multiple viewpoint images as a CUDA-based GPU kernel, designing it so that thousands of threads process individual pixels simultaneously. We also optimize CPU–GPU data transfers and improve memory access efficiency to maximize GPU parallel performance. The experimental results show that the proposed method achieves over a 5× speedup compared to the CPU across resolutions from FHD to 8K while maintaining output image quality equivalent to that of the CPU approach. Notably, we confirm near-real-time performance by processing large-scale 8K resolution with 16 viewpoints in just tens of milliseconds. This achievement significantly alleviates the computational bottleneck in large-scale holographic image synthesis, bringing real-time 3D holographic displays one step closer to realization. Furthermore, the proposed GPU acceleration technique is expected to serve as a foundational technology for real-time high-resolution hogel image generation in next-generation immersive display devices such as AR/VR/XR.
ISSN:2304-6732
DOI:10.3390/photonics12090882
Fuente:Advanced Technologies & Aerospace Database