Numerical Treatment of the Time Fractional Diffusion Wave Problem Using Chebyshev Polynomials
Guardado en:
| Publicado en: | Symmetry vol. 17, no. 9 (2025), p. 1451-1470 |
|---|---|
| Autor principal: | |
| Otros Autores: | , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This paper introduces an efficient numerical method based on applying the typical Petrov–Galerkin approach (<inline-formula>PGA</inline-formula>) to solve the time fractional diffusion wave equation (<inline-formula>TFDWE</inline-formula>). The method utilises asymmetric polynomials, namely, shifted second-kind Chebyshev polynomials (<inline-formula>SSKCPs</inline-formula>). New derivative formulas are derived and used for these polynomials to establish the operational matrices of their derivatives. The paper presents rigorous error bounds for the proposed method in Chebyshev-weighted Sobolev space and demonstrates its accuracy and efficiency through several illustrative numerical examples. The results reveal that the method achieves high accuracy with relatively low polynomial degrees. |
|---|---|
| ISSN: | 2073-8994 |
| DOI: | 10.3390/sym17091451 |
| Fuente: | Engineering Database |