Numerical Treatment of the Time Fractional Diffusion Wave Problem Using Chebyshev Polynomials

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 9 (2025), p. 1451-1470
Autor principal: Alzahrani, S S
Otros Autores: Alanazi, Abeer A, Atta Ahmed Gamal
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254649208
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17091451  |2 doi 
035 |a 3254649208 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Alzahrani, S S  |u Department of Mathematics, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia 
245 1 |a Numerical Treatment of the Time Fractional Diffusion Wave Problem Using Chebyshev Polynomials 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper introduces an efficient numerical method based on applying the typical Petrov–Galerkin approach (<inline-formula>PGA</inline-formula>) to solve the time fractional diffusion wave equation (<inline-formula>TFDWE</inline-formula>). The method utilises asymmetric polynomials, namely, shifted second-kind Chebyshev polynomials (<inline-formula>SSKCPs</inline-formula>). New derivative formulas are derived and used for these polynomials to establish the operational matrices of their derivatives. The paper presents rigorous error bounds for the proposed method in Chebyshev-weighted Sobolev space and demonstrates its accuracy and efficiency through several illustrative numerical examples. The results reveal that the method achieves high accuracy with relatively low polynomial degrees. 
653 |a Chebyshev approximation 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Diffusion waves 
653 |a Methods 
653 |a Mathematical analysis 
653 |a Wave equations 
653 |a Numerical methods 
653 |a Sobolev space 
653 |a Polynomials 
700 1 |a Alanazi, Abeer A  |u Department of Mathematics, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia 
700 1 |a Atta Ahmed Gamal  |u Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt 
773 0 |t Symmetry  |g vol. 17, no. 9 (2025), p. 1451-1470 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254649208/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254649208/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254649208/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch