Lie Symmetries, Solitary Waves, and Noether Conservation Laws for (2 + 1)-Dimensional Anisotropic Power-Law Nonlinear Wave Systems

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 9 (2025), p. 1445-1483
Autor principal: Samina, Samina
Otros Autores: Almusawa Hassan, Arif Faiza, Jhangeer Adil
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254649367
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17091445  |2 doi 
035 |a 3254649367 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Samina, Samina  |u General Education Centre, Quanzhou University of Information Engineering, Quanzhou 362000, China; samina@qzuie.edu.cn 
245 1 |a Lie Symmetries, Solitary Waves, and Noether Conservation Laws for (2 + 1)-Dimensional Anisotropic Power-Law Nonlinear Wave Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study presents the complete analysis of a (2 + 1)-dimensional nonlinear wave-type partial differential equation with anisotropic power-law nonlinearities and a general power-law source term, which arises in physical domains such as fluid dynamics, nonlinear acoustics, and wave propagation in elastic media, yet their symmetry properties and exact solution structures remain largely unexplored for arbitrary nonlinearity exponents. To fill this gap, a complete Lie symmetry classification of the equation is performed for arbitrary values of m and n, providing all admissible symmetry generators. These generators are then employed to systematically reduce the PDE to ordinary differential equations, enabling the construction of exact analytical solutions. Traveling wave and soliton solutions are derived using Jacobi elliptic function and sine-cosine methods, revealing rich nonlinear dynamics and wave patterns under anisotropic conditions. Additionally, conservation laws associated with variational symmetries are obtained via Noether’s theorem, yielding invariant physical quantities such as energy-like integrals. The results extend the existing literature by providing, for the first time, a full symmetry classification for arbitrary m and n, new families of soliton and traveling wave solutions in multidimensional settings, and associated conserved quantities. The findings contribute both computationally and theoretically to the study of nonlinear wave phenomena in multidimensional cases, extending the catalog of exact solutions and conserved dynamics of a broad class of nonlinear partial differential equations. 
653 |a Behavior 
653 |a Conservation laws 
653 |a Classification 
653 |a Mathematical analysis 
653 |a Symmetry 
653 |a Elliptic functions 
653 |a Propagation 
653 |a Elastic media 
653 |a Partial differential equations 
653 |a Power law 
653 |a Nonlinear differential equations 
653 |a Power 
653 |a Traveling waves 
653 |a Generators 
653 |a Exact solutions 
653 |a Wave propagation 
653 |a Methods 
653 |a Nonlinear systems 
653 |a Dynamical systems 
653 |a Fluid dynamics 
653 |a Acoustics 
653 |a Nonlinear dynamics 
653 |a Ordinary differential equations 
653 |a Solitary waves 
653 |a Lie groups 
653 |a Nonlinearity 
700 1 |a Almusawa Hassan  |u Department of Mathematics, College of Sciences, Jazan University, Jazan 45142, Saudi Arabia 
700 1 |a Arif Faiza  |u Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600, Pakistan; faizaarif71@gmail.com 
700 1 |a Jhangeer Adil  |u IT4-Innovations, VSB-Technical University of Ostrava, 70800 Ostrava-Poruba, Czech Republic; adil.jhangeer@vsb.cz 
773 0 |t Symmetry  |g vol. 17, no. 9 (2025), p. 1445-1483 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254649367/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254649367/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254649367/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch