Lie Symmetries, Solitary Waves, and Noether Conservation Laws for (2 + 1)-Dimensional Anisotropic Power-Law Nonlinear Wave Systems
Guardado en:
| Publicado en: | Symmetry vol. 17, no. 9 (2025), p. 1445-1483 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This study presents the complete analysis of a (2 + 1)-dimensional nonlinear wave-type partial differential equation with anisotropic power-law nonlinearities and a general power-law source term, which arises in physical domains such as fluid dynamics, nonlinear acoustics, and wave propagation in elastic media, yet their symmetry properties and exact solution structures remain largely unexplored for arbitrary nonlinearity exponents. To fill this gap, a complete Lie symmetry classification of the equation is performed for arbitrary values of m and n, providing all admissible symmetry generators. These generators are then employed to systematically reduce the PDE to ordinary differential equations, enabling the construction of exact analytical solutions. Traveling wave and soliton solutions are derived using Jacobi elliptic function and sine-cosine methods, revealing rich nonlinear dynamics and wave patterns under anisotropic conditions. Additionally, conservation laws associated with variational symmetries are obtained via Noether’s theorem, yielding invariant physical quantities such as energy-like integrals. The results extend the existing literature by providing, for the first time, a full symmetry classification for arbitrary m and n, new families of soliton and traveling wave solutions in multidimensional settings, and associated conserved quantities. The findings contribute both computationally and theoretically to the study of nonlinear wave phenomena in multidimensional cases, extending the catalog of exact solutions and conserved dynamics of a broad class of nonlinear partial differential equations. |
|---|---|
| ISSN: | 2073-8994 |
| DOI: | 10.3390/sym17091445 |
| Fuente: | Engineering Database |