Real-Time Sequential Adaptive Bin Packing Based on Second-Order Dual Pointer Adversarial Network: A Symmetry-Driven Approach for Balanced Container Loading

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Symmetry vol. 17, no. 9 (2025), p. 1554-1580
Váldodahkki: Zhou Zibao
Eará dahkkit: Wang Enliang, Zhao Xuejian
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3254652740
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17091554  |2 doi 
035 |a 3254652740 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Zhou Zibao  |u School of Smart Logistics and Manufacturing, Wuhu Vocational Technical University, Wuhu 241003, China 
245 1 |a Real-Time Sequential Adaptive Bin Packing Based on Second-Order Dual Pointer Adversarial Network: A Symmetry-Driven Approach for Balanced Container Loading 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Modern logistics operations require real-time adaptive solutions for three-dimensional bin packing that maintain spatial symmetry and load balance. This paper introduces a time-series-based online 3D packing problem with dual unknown sequences, where containers and items arrive dynamically. The challenge lies in achieving symmetric distribution for stability and optimal space utilization. We propose the Second-Order Dual Pointer Adversarial Network (So-DPAN), a deep reinforcement learning architecture that leverages symmetry principles to decompose spatiotemporal optimization into sequence matching and spatial arrangement sub-problems. The dual pointer mechanism enables efficient item-container pairing, while the second-order structure captures temporal dependencies by maintaining symmetric packing patterns. Our approach considers geometric symmetry for spatial arrangement and temporal symmetry for sequence matching. The Actor-Critic framework uses symmetry-based reward functions to guide learning toward balanced configurations. Experiments demonstrate that So-DPAN outperforms DQN, DDPG, and traditional heuristics in solution quality and efficiency while maintaining superior symmetry metrics in center-of-gravity positioning and load distribution. The algorithm exploits inherent symmetries in packing structure, advancing theoretical understanding through symmetry-aware optimization while providing a deployable framework for Industry 4.0 smart logistics. 
653 |a Loading operations 
653 |a Containers 
653 |a Integer programming 
653 |a Deep learning 
653 |a Matching 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Real time 
653 |a Decision making 
653 |a Load distribution (forces) 
653 |a Symmetry 
653 |a Industry 4.0 
653 |a Packing problem 
653 |a Sequences 
653 |a Batch processing 
653 |a Logistics 
653 |a Time series 
653 |a Heuristic 
653 |a Efficiency 
700 1 |a Wang Enliang  |u Jiangsu Postal Big Data Technology and Application Engineering Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 
700 1 |a Zhao Xuejian  |u Jiangsu Postal Big Data Technology and Application Engineering Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 
773 0 |t Symmetry  |g vol. 17, no. 9 (2025), p. 1554-1580 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254652740/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254652740/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254652740/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch