Fault-tolerant control for nonlinear time-delay systems using neural network observers

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:International Journal of Dynamics and Control vol. 13, no. 1 (Jan 2025), p. 33
المؤلف الرئيسي: Rahimi, Farshad
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:This article addresses the problem of fault-tolerant control in nonlinear time-delay systems using adaptive dynamic programming. An adaptive neural network observer is developed to estimate unknown dynamics, system states, and actuator faults. This observer is then transformed into an augmented structure for optimal fault-tolerant control problem. The gains of this observer are determined by solving a linear matrix inequality. A new value function index is introduced to account for time-delay states, and control law is derived associated with this novel value function. The Hamilton–Jacobi–Bellman equation for this value function is solved via a critic neural network. Lyapunov functional analysis demonstrates that the closed-loop system remains uniformly ultimately bounded. Simulation results validate the proposed fault tolerant approach. The key contribution of this paper lies in incorporating time-delay states into the adaptive dynamic programming value function in the presence of actuator faults.
تدمد:2195-268X
2195-2698
DOI:10.1007/s40435-024-01536-y
المصدر:Advanced Technologies & Aerospace Database