Application of Multimedia Information Processing in the Prediction of Geotechnical Parameters
Đã lưu trong:
| Xuất bản năm: | Journal of Cases on Information Technology vol. 27, no. 1 (2025), p. 1-22 |
|---|---|
| Tác giả chính: | |
| Được phát hành: |
IGI Global
|
| Những chủ đề: | |
| Truy cập trực tuyến: | Citation/Abstract Full Text - PDF |
| Các nhãn: |
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
| Bài tóm tắt: | Key performance parameters of geotechnical materials significantly impact engineering design and construction. To address challenges in measuring certain parameters, this study proposed a prediction method based on multimedia information processing and deep learning. Acoustic emission and computed tomography scan data was processed to extract features related to Poisson's ratio, the void ratio, the density, and the compression modulus of peat soil. A gated recurrent unit neural network optimized by the particle swarm optimization algorithm was employed for parameter prediction. The results showed that the “particle swarm optimization-gated recurrent unit” model effectively predicted these parameters, with the best performance in predicting the compression modulus and the weakest for the void ratio. This approach provides a novel and reliable method for acquiring and verifying geotechnical parameters. |
|---|---|
| số ISSN: | 1548-7717 1548-7725 1098-8580 1537-937X |
| DOI: | 10.4018/JCIT.388930 |
| Nguồn: | ABI/INFORM Global |