Harnessing operating room signals to estimate mean arterial pressure with AnesthNet
Guardado en:
| Publicado en: | Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 33988-34000 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , |
| Publicado: |
Nature Publishing Group
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Monitoring mean arterial pressure (MAP) is essential for ensuring safe general anesthesia. Current practices rely either on non-invasive cuff measurements, which suffer from poor temporal resolution, or invasive arterial lines, which provide excellent accuracy and resolution but carry a significant risk of complications. Therefore, identifying alternatives to arterial lines in the operating rooms is a pressing need. Despite the importance of this issue in the community, clinically viable non-invasive MAP monitoring methods have yet to emerge. Existing approaches often encounter reproducibility issues, notably on large, open-source databases, and are not always optimized for real-time predictions. To address these limitations, this study introduces AnesthNet, a deep learning architecture designed for MAP estimation, using data exclusively from non-invasive and routine sensors such as photoplethysmography, ECG, and cuff oscillometer. AnesthNet was evaluated against the best-performing state-of-the-art deep learning architectures, using international standards to assess their performance on two of the largest datasets to date: VitalDB (2,833 patients) and LaribDB (5,060 patients). AnesthNet achieved superior performances, reaching an MAE of 4.6 (± 4.7) mmHg on VitalDB and 3.8 (± 5.7) mmHg on LaribDB. Our model also outperformed other architectures for different delays in cuff values and yielded no significant latency during inference, meeting clinical real-time requirements. |
|---|---|
| ISSN: | 2045-2322 |
| DOI: | 10.1038/s41598-025-12341-8 |
| Fuente: | Science Database |