Harnessing operating room signals to estimate mean arterial pressure with AnesthNet

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 33988-34000
Päätekijä: Perdereau, Jade
Muut tekijät: Joachim, Jona, Vallée, Fabrice, Cartailler, Jérôme, Moreau, Thomas
Julkaistu:
Nature Publishing Group
Aiheet:
Linkit:Citation/Abstract
Full Text
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3256003148
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-12341-8  |2 doi 
035 |a 3256003148 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Perdereau, Jade  |u INSERM, U942 MASCOT, Université Paris Cité, 75006, Paris, France (ROR: https://ror.org/05f82e368) (GRID: grid.508487.6) (ISNI: 0000 0004 7885 7602); Department of Anaesthesia and Critical Care, APHP, Hôpital Lariboisière, 75010, Paris, France (ROR: https://ror.org/02mqtne57) (GRID: grid.411296.9) (ISNI: 0000 0000 9725 279X); Inria, Université Paris-Saclay, Palaiseau, France (ROR: https://ror.org/03xjwb503) (GRID: grid.460789.4) (ISNI: 0000 0004 4910 6535) 
245 1 |a Harnessing operating room signals to estimate mean arterial pressure with AnesthNet 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Monitoring mean arterial pressure (MAP) is essential for ensuring safe general anesthesia. Current practices rely either on non-invasive cuff measurements, which suffer from poor temporal resolution, or invasive arterial lines, which provide excellent accuracy and resolution but carry a significant risk of complications. Therefore, identifying alternatives to arterial lines in the operating rooms is a pressing need. Despite the importance of this issue in the community, clinically viable non-invasive MAP monitoring methods have yet to emerge. Existing approaches often encounter reproducibility issues, notably on large, open-source databases, and are not always optimized for real-time predictions. To address these limitations, this study introduces AnesthNet, a deep learning architecture designed for MAP estimation, using data exclusively from non-invasive and routine sensors such as photoplethysmography, ECG, and cuff oscillometer. AnesthNet was evaluated against the best-performing state-of-the-art deep learning architectures, using international standards to assess their performance on two of the largest datasets to date: VitalDB (2,833 patients) and LaribDB (5,060 patients). AnesthNet achieved superior performances, reaching an MAE of 4.6 (± 4.7) mmHg on VitalDB and 3.8 (± 5.7) mmHg on LaribDB. Our model also outperformed other architectures for different delays in cuff values and yielded no significant latency during inference, meeting clinical real-time requirements. 
610 4 |a Association for the Advancement of Medical Instrumentation Assistance Publique-Hopitaux de Paris 
651 4 |a Netherlands 
653 |a Physiology 
653 |a Monitoring methods 
653 |a Deep learning 
653 |a Datasets 
653 |a International standards 
653 |a Calibration 
653 |a Vital signs 
653 |a Signal processing 
653 |a Electrocardiography 
653 |a Hypotension 
653 |a Causality 
653 |a Anesthesia 
653 |a EKG 
653 |a Patients 
653 |a Electronic health records 
653 |a Blood pressure 
653 |a Neural networks 
653 |a Hemodynamics 
653 |a Data collection 
653 |a Libraries 
653 |a Latency 
653 |a Intensive care 
653 |a Data warehouses 
653 |a Critical care 
653 |a Environmental 
700 1 |a Joachim, Jona  |u INSERM, U942 MASCOT, Université Paris Cité, 75006, Paris, France (ROR: https://ror.org/05f82e368) (GRID: grid.508487.6) (ISNI: 0000 0004 7885 7602); Department of Anaesthesia and Critical Care, APHP, Hôpital Lariboisière, 75010, Paris, France (ROR: https://ror.org/02mqtne57) (GRID: grid.411296.9) (ISNI: 0000 0000 9725 279X); LMS, CNRS, Institut Polytechnique de Paris, Palaiseau, France (ROR: https://ror.org/042tfbd02) (GRID: grid.508893.f) 
700 1 |a Vallée, Fabrice  |u INSERM, U942 MASCOT, Université Paris Cité, 75006, Paris, France (ROR: https://ror.org/05f82e368) (GRID: grid.508487.6) (ISNI: 0000 0004 7885 7602); Department of Anaesthesia and Critical Care, APHP, Hôpital Lariboisière, 75010, Paris, France (ROR: https://ror.org/02mqtne57) (GRID: grid.411296.9) (ISNI: 0000 0000 9725 279X); LMS, CNRS, Institut Polytechnique de Paris, Palaiseau, France (ROR: https://ror.org/042tfbd02) (GRID: grid.508893.f) 
700 1 |a Cartailler, Jérôme  |u INSERM, U942 MASCOT, Université Paris Cité, 75006, Paris, France (ROR: https://ror.org/05f82e368) (GRID: grid.508487.6) (ISNI: 0000 0004 7885 7602); Department of Anaesthesia and Critical Care, APHP, Hôpital Lariboisière, 75010, Paris, France (ROR: https://ror.org/02mqtne57) (GRID: grid.411296.9) (ISNI: 0000 0000 9725 279X) 
700 1 |a Moreau, Thomas  |u Inria, Université Paris-Saclay, Palaiseau, France (ROR: https://ror.org/03xjwb503) (GRID: grid.460789.4) (ISNI: 0000 0004 4910 6535) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 33988-34000 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3256003148/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3256003148/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3256003148/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch