Machine Learning for Quality Control in the Food Industry: A Review

Sparad:
Bibliografiska uppgifter
I publikationen:Foods vol. 14, no. 19 (2025), p. 3424-3459
Huvudupphov: Liakos, Konstantinos G
Övriga upphov: Athanasiadis Vassilis, Bozinou Eleni, Lalas, Stavros I
Utgiven:
MDPI AG
Ämnen:
Länkar:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3261075778
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14193424  |2 doi 
035 |a 3261075778 
045 2 |b d20250101  |b d20251231 
084 |a 231462  |2 nlm 
100 1 |a Liakos, Konstantinos G  |u Department of Electrical and Computer Engineering, University of Thessaly, Sekeri Street, 38334 Volos, Greece; kliakos@uth.gr 
245 1 |a Machine Learning for Quality Control in the Food Industry: A Review 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The increasing complexity of modern food production demands advanced solutions for quality control (QC), safety monitoring, and process optimization. This review systematically explores recent advancements in machine learning (ML) for QC across six domains: Food Quality Applications; Defect Detection and Visual Inspection Systems; Ingredient Optimization and Nutritional Assessment; Packaging—Sensors and Predictive QC; Supply Chain—Traceability and Transparency and Food Industry Efficiency; and Industry 4.0 Models. Following a PRISMA-based methodology, a structured search of the Scopus database using thematic Boolean keywords identified 124 peer-reviewed publications (2005–2025), from which 25 studies were selected based on predefined inclusion and exclusion criteria, methodological rigor, and innovation. Neural networks dominated the reviewed approaches, with ensemble learning as a secondary method, and supervised learning prevailing across tasks. Emerging trends include hyperspectral imaging, sensor fusion, explainable AI, and blockchain-enabled traceability. Limitations in current research include domain coverage biases, data scarcity, and underexplored unsupervised and hybrid methods. Real-world implementation challenges involve integration with legacy systems, regulatory compliance, scalability, and cost–benefit trade-offs. The novelty of this review lies in combining a transparent PRISMA approach, a six-domain thematic framework, and Industry 4.0/5.0 integration, providing cross-domain insights and a roadmap for robust, transparent, and adaptive QC systems in the food industry. 
610 4 |a Food & Drug Administration--FDA 
651 4 |a United States--US 
653 |a Nutrition assessment 
653 |a Quality control 
653 |a Defects 
653 |a Supervised learning 
653 |a Optimization 
653 |a Industry 4.0 
653 |a Food quality 
653 |a Food production 
653 |a ISO standards 
653 |a Machine learning 
653 |a Explainable artificial intelligence 
653 |a Learning algorithms 
653 |a Food industry 
653 |a Good Manufacturing Practice 
653 |a Adaptive systems 
653 |a Embedded systems 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Genetic algorithms 
653 |a Sensors 
653 |a Classification 
653 |a Industrial applications 
653 |a Supply chains 
653 |a Ensemble learning 
653 |a Multisensor fusion 
653 |a Hyperspectral imaging 
700 1 |a Athanasiadis Vassilis  |u Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Street, 43100 Karditsa, Greece; vaathanasiadis@uth.gr (V.A.); empozinou@uth.gr (E.B.) 
700 1 |a Bozinou Eleni  |u Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Street, 43100 Karditsa, Greece; vaathanasiadis@uth.gr (V.A.); empozinou@uth.gr (E.B.) 
700 1 |a Lalas, Stavros I  |u Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Street, 43100 Karditsa, Greece; vaathanasiadis@uth.gr (V.A.); empozinou@uth.gr (E.B.) 
773 0 |t Foods  |g vol. 14, no. 19 (2025), p. 3424-3459 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261075778/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3261075778/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261075778/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch