Integrating elite opposition-based learning and Cauchy–Gaussian mutation into sparrow search algorithm for time–impact collaborative trajectory optimization of robotic manipulators

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical Sciences vol. 16, no. 2 (2025), p. 533-548
1. Verfasser: Wang, Yue
Weitere Verfasser: Lei, Rongguang, Wang, Meng, Sun, Huijie, Ma, Xiping, Zhou, Yan
Veröffentlicht:
Copernicus GmbH
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3262062499
003 UK-CbPIL
022 |a 2191-9151 
022 |a 2191-916X 
024 7 |a 10.5194/ms-16-533-2025  |2 doi 
035 |a 3262062499 
045 2 |b d20250101  |b d20251231 
084 |a 263034  |2 nlm 
100 1 |a Wang, Yue  |u The School of Mechanical Engineering, Beihua University, Jilin City, Jilin Province, China 
245 1 |a Integrating elite opposition-based learning and Cauchy–Gaussian mutation into sparrow search algorithm for time–impact collaborative trajectory optimization of robotic manipulators 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Aiming at the problems such as low convergence efficiency, local optimization traps, and insufficient multi-objective cooperative optimization existing in the multi-objective trajectory planning of industrial robotic arms, this study proposes a trajectory optimization method based on a new improved sparrow search algorithm (NISSA). Firstly, by integrating elite reverse learning and the Cauchy–Gaussian mutation strategy, the NISSA algorithm is constructed to enhance the global search ability and convergence efficiency. Secondly, the 3–5–3 polynomial interpolation method is adopted to establish a continuous and smooth joint spatial trajectory model to ensure the continuity of position, velocity, and acceleration. Finally, a multi-objective optimization function integrating time and mechanical shock is constructed, and the collaborative optimization of efficiency and stability is achieved through dynamic weight allocation. The simulation experiments based on the IRB4600 six-axis robotic arm show that compared with the traditional sparrow algorithm (SSA) and multi-strategy improved particle swarm optimization (MIPSO), NISSA shortens the trajectory planning time by 19.6 %, reduces path redundancy by 25.7 %, increases the iterative convergence speed by 68.75 %, and reduces the standard deviation of joint acceleration to 28.5 % of the original value. The research results provide theoretical support and technical implementation paths for the high-precision and efficient operation of robotic arms in complex industrial scenarios. 
653 |a Mechanical shock 
653 |a Kinematics 
653 |a Particle swarm optimization 
653 |a Collaboration 
653 |a Deep learning 
653 |a Strategy 
653 |a Optimization 
653 |a Polynomials 
653 |a Efficiency 
653 |a Multiple objective analysis 
653 |a Energy consumption 
653 |a Industrial robots 
653 |a Robotics 
653 |a Velocity 
653 |a Convergence 
653 |a Coordinate transformations 
653 |a Trajectory optimization 
653 |a Learning 
653 |a Robot arms 
653 |a Search algorithms 
653 |a Acceleration 
653 |a Local optimization 
653 |a Algorithms 
653 |a Mutation 
653 |a Trajectory planning 
700 1 |a Lei, Rongguang  |u The School of Electrical and Information Engineering, Beihua University, Jilin City, Jilin Province, China 
700 1 |a Wang, Meng  |u The School of Mechanical Engineering, Beihua University, Jilin City, Jilin Province, China 
700 1 |a Sun, Huijie  |u The School of Mechanical Engineering, Beihua University, Jilin City, Jilin Province, China 
700 1 |a Ma, Xiping  |u The School of Electrical and Information Engineering, Beihua University, Jilin City, Jilin Province, China 
700 1 |a Zhou, Yan  |u Institute of Intelligent Manufacturing, Jilin General Aviation Vocational and Technical College, Jilin University, Jilin City, Jilin Province, China 
773 0 |t Mechanical Sciences  |g vol. 16, no. 2 (2025), p. 533-548 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3262062499/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3262062499/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3262062499/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch