Biases in AI-Supported Industry 4.0 Research: A Systematic Review, Taxonomy, and Mitigation Strategies

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Applied Sciences vol. 15, no. 20 (2025), p. 10913-10934
Hoofdauteur: Arévalo-Royo, Javier
Andere auteurs: Francisco-Javier, Flor-Montalvo, Juan-Ignacio, Latorre-Biel, Jiménez-Macías Emilio, Martínez-Cámara, Eduardo, Blanco-Fernández, Julio
Gepubliceerd in:
MDPI AG
Onderwerpen:
Online toegang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3265830226
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app152010913  |2 doi 
035 |a 3265830226 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Arévalo-Royo, Javier  |u Institute of Smart Cities (ISC), Public University of Navarre, 31006 Pamplona, Spain; arevalo.158423@e.unavarra.es (J.A.-R.); juanignacio.latorre@unavarra.es (J.-I.L.-B.) 
245 1 |a Biases in AI-Supported Industry 4.0 Research: A Systematic Review, Taxonomy, and Mitigation Strategies 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Industrial engineering research has been reshaped by the integration of artificial intelligence (AI) within the framework of Industry 4.0, characterized by the interplay between cyber-physical systems (CPS), advanced automation, and the Industrial Internet of Things (IIoT). While this integration opens new opportunities, it also introduces biases that undermine the reliability and robustness of scientific and industrial outcomes. This article presents a systematic literature review (SLR), supported by natural language processing techniques, aimed at identifying and classifying biases in AI-driven research within industrial contexts. Based on this meta-research approach, a taxonomy is proposed that maps biases across the stages of the scientific method as well as the operational layers of intelligent production systems. Statistical analysis confirms that biases are unevenly distributed, with a higher incidence in hypothesis formulation and results dissemination. The study also identifies emergent AI-related biases specific to industrial applications such as predictive maintenance, quality control, and digital twin management. Practical implications include stronger reliability in predictive analytics for manufacturers, improved accuracy in monitoring and rescue operations through transparent AI pipelines, and enhanced reproducibility for researchers across stages. Mitigation strategies are then discussed to safeguard research integrity and support trustworthy, bias-aware decision-making in Industry 4.0. 
653 |a Industrial engineering 
653 |a Big Data 
653 |a Simulation 
653 |a Research methodology 
653 |a Design of experiments 
653 |a Artificial intelligence 
653 |a Hypotheses 
653 |a Scientific method 
653 |a Decision making 
653 |a Industrial Internet of Things 
653 |a Taxonomy 
653 |a Data analysis 
653 |a Natural language processing 
653 |a Literature reviews 
653 |a Algorithms 
653 |a Research & development--R&D 
653 |a Industry 4.0 
653 |a Engineering research 
653 |a Systematic review 
653 |a Bias 
700 1 |a Francisco-Javier, Flor-Montalvo  |u Higher School of Engineering and Technology, International University of La Rioja (UNIR), 26004 Logroño, Spain; franciscojavier.flor@unir.net 
700 1 |a Juan-Ignacio, Latorre-Biel  |u Institute of Smart Cities (ISC), Public University of Navarre, 31006 Pamplona, Spain; arevalo.158423@e.unavarra.es (J.A.-R.); juanignacio.latorre@unavarra.es (J.-I.L.-B.) 
700 1 |a Jiménez-Macías Emilio  |u Department of Electrical Engineering, University of La Rioja, 26004 Logroño, Spain; emilio.jimenez@unirioja.es 
700 1 |a Martínez-Cámara, Eduardo  |u Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain; julio.blanco@unirioja.es 
700 1 |a Blanco-Fernández, Julio  |u Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain; julio.blanco@unirioja.es 
773 0 |t Applied Sciences  |g vol. 15, no. 20 (2025), p. 10913-10934 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265830226/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265830226/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265830226/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch