Beyond Single Systems: How Multi-Agent AI Is Reshaping Ethics in Radiology

Enregistré dans:
Détails bibliographiques
Publié dans:Bioengineering vol. 12, no. 10 (2025), p. 1100-1122
Auteur principal: Salehi, Sara
Autres auteurs: Singh Yashbir, Habibi Parnian, Erickson, Bradley J
Publié:
MDPI AG
Sujets:
Accès en ligne:Citation/Abstract
Full Text
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3265832460
003 UK-CbPIL
022 |a 2306-5354 
024 7 |a 10.3390/bioengineering12101100  |2 doi 
035 |a 3265832460 
045 2 |b d20250101  |b d20251231 
100 1 |a Salehi, Sara  |u Radiology Informatics Lab, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; salehi.sara@mayo.edu 
245 1 |a Beyond Single Systems: How Multi-Agent AI Is Reshaping Ethics in Radiology 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Radiology is undergoing a paradigm shift from traditional single-function AI systems to sophisticated multi-agent networks capable of autonomous reasoning, coordinated decision-making, and adaptive workflow management. These agentic AI systems move beyond simple pattern recognition to encompass complex radiological workflows including image analysis, report generation, clinical communication, and care coordination. While multi-agent radiological AI promises enhanced diagnostic accuracy, improved workflow efficiency, and reduced physician burden, it simultaneously amplifies the long-standing “black box” problem. Traditional explainable AI methods, which are adequate for understanding isolated diagnostic predictions, fail when applied to multi-step reasoning processes involving multiple specialized agents coordinating across imaging interpretation, clinical correlation, and treatment planning. This paper examines how agentic AI systems in radiology create “compound opacity” layers of inscrutability from agent interactions and distributed decision-making processes. We analyze the autonomy–transparency paradox specific to radiological practice, where increasing AI capability directly conflicts with interpretability requirements essential for clinical trust and regulatory oversight. Through examination of emerging multi-agent radiological workflows, we propose frameworks for responsible implementation that preserve both diagnostic innovation and the fundamental principles of medical transparency and accountability. 
653 |a Image analysis 
653 |a Agents (artificial intelligence) 
653 |a Collaboration 
653 |a Artificial intelligence 
653 |a Pattern recognition 
653 |a Decision making 
653 |a Workflow 
653 |a Reasoning 
653 |a Image processing 
653 |a Multiagent systems 
653 |a Explainable artificial intelligence 
653 |a Large language models 
653 |a Radiology 
653 |a Autonomy 
653 |a Agentic artificial intelligence 
700 1 |a Singh Yashbir  |u Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; singh.yashbir@mayo.edu (Y.S.); habibi.parnian@mayo.edu (P.H.) 
700 1 |a Habibi Parnian  |u Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; singh.yashbir@mayo.edu (Y.S.); habibi.parnian@mayo.edu (P.H.) 
700 1 |a Erickson, Bradley J  |u Radiology Informatics Lab, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; salehi.sara@mayo.edu 
773 0 |t Bioengineering  |g vol. 12, no. 10 (2025), p. 1100-1122 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265832460/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3265832460/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265832460/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch