Real-Time Digital Twin for Structural Health Monitoring of Floating Offshore Wind Turbines

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Marine Science and Engineering vol. 13, no. 10 (2025), p. 1953-1979
Autor principal: Pastor-Sanchez, Andres
Otros Autores: Garcia-Espinosa, Julio, Di Capua Daniel, Servan-Camas Borja, Berdugo-Parada Irene
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265915339
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13101953  |2 doi 
035 |a 3265915339 
045 2 |b d20251001  |b d20251031 
084 |a 231479  |2 nlm 
100 1 |a Pastor-Sanchez, Andres  |u Departamento de Arquitectura, Construcción y Sistemas Oceánicos y Navales, Escuela Técnica Superior de Ingenieros Navales, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain 
245 1 |a Real-Time Digital Twin for Structural Health Monitoring of Floating Offshore Wind Turbines 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Digital twins (DTs) offer significant promise for condition-based maintenance of floating offshore wind turbines (FOWTs); however, existing solutions typically compromise either on physical rigor or real-time computational performance. This paper presents a real-time DT framework that resolves this trade-off by embedding a hydro-elastic reduced-order model (ROM) that accurately captures structural dynamics and fluid–structure interaction. Integrated in a cloud-ready Internet of Things architecture, the ROM reconstructs full-field displacements, von Mises stresses, and fatigue metrics with near real-time responsiveness. Validation on the 5 MW OC4-DeepCWind semi-submersible platform shows that the ROM reproduces finite-element (FEM) displacements and stresses with relative errors below 1%. A three-hour load case is solved in 0.69 min for displacements and 3.81 min for stresses on a consumer-grade NVIDIA RTX 4070 Ti GPU—over two orders of magnitude faster than the full FEM model—while one million fatigue stress histories (1000 hotspots × 1000 operating scenarios) are processed in 37 min. This efficiency enables continuous structural monitoring, rapid *what-if* assessments and timely decision-making for targeted inspections and adaptive control. By effectively combining physics-based reduced-order modeling with high-throughput computation, the proposed framework overcomes key barriers to DT deployment: computational overhead, physical fidelity and scalability. Although demonstrated on a steel platform, the approach is readily extensible to composite structures and multi-turbine arrays, providing a robust foundation for cost-effective and reliable deep-water wind-energy operations. 
651 4 |a Scotland 
651 4 |a United Kingdom--UK 
653 |a Deep water 
653 |a Finite element method 
653 |a Offshore 
653 |a Wind power 
653 |a Reduced order models 
653 |a Deep learning 
653 |a Internet of Things 
653 |a Inspection 
653 |a Estimates 
653 |a Steel structures 
653 |a Adaptive control 
653 |a Physics 
653 |a Computer applications 
653 |a Submersibles 
653 |a Semisubmersible platforms 
653 |a Submersible platforms 
653 |a Stresses 
653 |a Structural health monitoring 
653 |a Turbines 
653 |a Simulation 
653 |a Materials fatigue 
653 |a Digital twins 
653 |a Sensors 
653 |a Fluid-structure interaction 
653 |a Mathematical models 
653 |a Wind turbines 
653 |a Composite structures 
653 |a Real time 
653 |a Floating 
653 |a Embedding 
653 |a Decision making 
653 |a Structural dynamics 
653 |a Turbine engines 
653 |a Environmental 
700 1 |a Garcia-Espinosa, Julio  |u Departamento de Arquitectura, Construcción y Sistemas Oceánicos y Navales, Escuela Técnica Superior de Ingenieros Navales, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain 
700 1 |a Di Capua Daniel  |u Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Gran Capitan s/n, 08034 Barcelona, Spain; dicapua@cimne.upc.edu (D.D.C.); bservan@cimne.upc.edu (B.S.-C.); irene.berdugo@upc.edu (I.B.-P.) 
700 1 |a Servan-Camas Borja  |u Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Gran Capitan s/n, 08034 Barcelona, Spain; dicapua@cimne.upc.edu (D.D.C.); bservan@cimne.upc.edu (B.S.-C.); irene.berdugo@upc.edu (I.B.-P.) 
700 1 |a Berdugo-Parada Irene  |u Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Gran Capitan s/n, 08034 Barcelona, Spain; dicapua@cimne.upc.edu (D.D.C.); bservan@cimne.upc.edu (B.S.-C.); irene.berdugo@upc.edu (I.B.-P.) 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 10 (2025), p. 1953-1979 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265915339/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265915339/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265915339/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch