FastKAN-DDD: A novel fast Kolmogorov-Arnold network-based approach for driver drowsiness detection optimized for TinyML deployment

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 11 (Nov 2025), p. e0332577
Autor principal: Essahraui, Siham
Otros Autores: Ismail Lamaakal, Maleh, Yassine, Khalid El Makkaoui, Mouncef Filali Bouami, Ouahbi, Ibrahim, Elmannai, Hela, Abd El-Latif, Ahmed A
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3269212627
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0332577  |2 doi 
035 |a 3269212627 
045 2 |b d20251101  |b d20251130 
084 |a 174835  |2 nlm 
100 1 |a Essahraui, Siham 
245 1 |a FastKAN-DDD: A novel fast Kolmogorov-Arnold network-based approach for driver drowsiness detection optimized for TinyML deployment 
260 |b Public Library of Science  |c Nov 2025 
513 |a Journal Article 
520 3 |a Driver drowsiness is a leading cause of traffic accidents and fatalities, highlighting the urgent need for intelligent systems capable of real-time fatigue detection. Although recent advancements in machine learning (ML) and deep learning (DL) have significantly improved detection accuracy, most existing models are computationally demanding and not well-suited for deployment in resource-limited environments such as microcontrollers. While the emerging domain of TinyML presents promising avenues for such applications, there remains a substantial gap in the development of lightweight, interpretable, and high-performance models specifically tailored for embedded automotive systems. This paper introduces FastKAN-DDD, an innovative driver drowsiness detection model grounded in the Fast Kolmogorov-Arnold Network (FastKAN) architecture. The model incorporates learnable nonlinear activation functions based on radial basis functions (RBFs), facilitating efficient function approximation with a minimal number of parameters. To enhance suitability for TinyML deployment, the model is further optimized through post-training quantization techniques, including dynamic range, float-16, and weight-only quantization. Comprehensive experiments were conducted using the UTA-RLDD dataset—a real-world benchmark for driver drowsiness detection—evaluating the model across various input resolutions and quantization schemes. The FastKAN-DDD model achieved a test accuracy of 99.94%, with inference latency as low as 0.04 ms and a total memory footprint of merely 35 KB, rendering it exceptionally well-suited for real-time inference on microcontroller-based systems. Comparative evaluations further confirm that FastKAN surpasses several state-of-the-art TinyML models in terms of accuracy, computational efficiency, and model compactness. Our code’s are publicly available at: https://github.com/sihamess/driver_drowsiness_detection_TinyML. 
653 |a Physiology 
653 |a Microcontrollers 
653 |a Traffic accidents 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Sleepiness 
653 |a Real time 
653 |a Machine learning 
653 |a Driver fatigue 
653 |a Vehicles 
653 |a Fatigue 
653 |a Embedded systems 
653 |a Radial basis function 
653 |a Failure analysis 
653 |a Neural networks 
653 |a Classification 
653 |a Inference 
653 |a Network latency 
653 |a Traffic accidents & safety 
653 |a Drowsiness 
653 |a Latency 
700 1 |a Ismail Lamaakal 
700 1 |a Maleh, Yassine 
700 1 |a Khalid El Makkaoui 
700 1 |a Mouncef Filali Bouami 
700 1 |a Ouahbi, Ibrahim 
700 1 |a Elmannai, Hela 
700 1 |a Abd El-Latif, Ahmed A 
773 0 |t PLoS One  |g vol. 20, no. 11 (Nov 2025), p. e0332577 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3269212627/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3269212627/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3269212627/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch