A Review of Deep Learning in Rotating Machinery Fault Diagnosis and Its Prospects for Port Applications

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Applied Sciences vol. 15, no. 21 (2025), p. 11303-11350
Κύριος συγγραφέας: Wang, Haifeng
Άλλοι συγγραφείς: Wang, Hui, Tang Xianqiong
Έκδοση:
MDPI AG
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
Περιγραφή
Περίληψη:As port operations rapidly evolve toward intelligent and heavy-duty applications, fault diagnosis for core equipment demands higher levels of real-time performance and robustness. Deep learning, with its powerful autonomous feature learning capabilities, demonstrates significant potential in mechanical fault prediction and health management. This paper first provides a systematic review of deep learning research advances in rotating machinery fault diagnosis over the past eight years, focusing on the technical approaches and application cases of four representative models: Deep Belief Networks (DBNs), Convolutional Neural Networks (CNNs), Auto-encoders (AEs), and Recurrent Neural Networks (RNNs). These models, respectively, embody four core paradigms, unsupervised feature generation, spatial pattern extraction, data reconstruction learning, and temporal dependency modeling, forming the technological foundation of contemporary intelligent diagnostics. Building upon this foundation, this paper delves into the unique challenges encountered when transferring these methods from generic laboratory components to specialized port equipment such as shore cranes and yard cranes—including complex operating conditions, harsh environments, and system coupling. It further explores future research directions, including cross-condition transfer, multi-source information fusion, and lightweight deployment, aiming to provide theoretical references and implementation pathways for the technological advancement of intelligent operation and maintenance in port equipment.
ISSN:2076-3417
DOI:10.3390/app152111303
Πηγή:Publicly Available Content Database