A Review of Deep Learning in Rotating Machinery Fault Diagnosis and Its Prospects for Port Applications

Guardat en:
Dades bibliogràfiques
Publicat a:Applied Sciences vol. 15, no. 21 (2025), p. 11303-11350
Autor principal: Wang, Haifeng
Altres autors: Wang, Hui, Tang Xianqiong
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3271550615
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app152111303  |2 doi 
035 |a 3271550615 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Wang, Haifeng  |u Shanghai Zhenhua Heavy Industries Co., Ltd., Shanghai 200125, China; wanghaifeng@zpmc.com 
245 1 |a A Review of Deep Learning in Rotating Machinery Fault Diagnosis and Its Prospects for Port Applications 
260 |b MDPI AG  |c 2025 
513 |a Review 
520 3 |a As port operations rapidly evolve toward intelligent and heavy-duty applications, fault diagnosis for core equipment demands higher levels of real-time performance and robustness. Deep learning, with its powerful autonomous feature learning capabilities, demonstrates significant potential in mechanical fault prediction and health management. This paper first provides a systematic review of deep learning research advances in rotating machinery fault diagnosis over the past eight years, focusing on the technical approaches and application cases of four representative models: Deep Belief Networks (DBNs), Convolutional Neural Networks (CNNs), Auto-encoders (AEs), and Recurrent Neural Networks (RNNs). These models, respectively, embody four core paradigms, unsupervised feature generation, spatial pattern extraction, data reconstruction learning, and temporal dependency modeling, forming the technological foundation of contemporary intelligent diagnostics. Building upon this foundation, this paper delves into the unique challenges encountered when transferring these methods from generic laboratory components to specialized port equipment such as shore cranes and yard cranes—including complex operating conditions, harsh environments, and system coupling. It further explores future research directions, including cross-condition transfer, multi-source information fusion, and lightweight deployment, aiming to provide theoretical references and implementation pathways for the technological advancement of intelligent operation and maintenance in port equipment. 
653 |a Predictive maintenance 
653 |a Machine learning 
653 |a Accuracy 
653 |a Deep learning 
653 |a Defects 
653 |a Fourier transforms 
653 |a Fault diagnosis 
653 |a Business intelligence 
653 |a Signal processing 
653 |a Neural networks 
653 |a Data processing 
653 |a Natural language processing 
653 |a Financial analysis 
653 |a Paradigms 
653 |a Time series 
653 |a Dimensional analysis 
653 |a Data compression 
653 |a Efficiency 
653 |a Pattern recognition 
700 1 |a Wang, Hui  |u School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China; 202321642837@smail.xtu.edu.cn 
700 1 |a Tang Xianqiong  |u School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China; 202321642837@smail.xtu.edu.cn 
773 0 |t Applied Sciences  |g vol. 15, no. 21 (2025), p. 11303-11350 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271550615/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271550615/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271550615/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch