Polynomial Optimization for Geometry-Aware Safety-Critical Motion Planning of Mobile Robots

Guardado en:
Detalles Bibliográficos
Publicado en:PQDT - Global (2025)
Autor principal: Li, Yulin
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3273626645
003 UK-CbPIL
020 |a 9798263313159 
035 |a 3273626645 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Li, Yulin 
245 1 |a Polynomial Optimization for Geometry-Aware Safety-Critical Motion Planning of Mobile Robots 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a With the increasing demand for autonomous robots operating in complex environments, motion planning in cluttered and unknown spaces has become a critical research area. A promising approach involves decomposing the environment into free regions and planning trajectories through these regions. However, the inherent complexity and nonconvexity of collision-free configuration spaces pose significant challenges in effectively modeling containment relationships, particularly when dealing with intricate obstacle layouts and arbitrary robot geometries. Existing free space decomposition methods suffer from significant limitations: they either lack theoretical safety guarantees or oversimplify robot geometries to achieve computational tractability. This dissertation addresses two critical problems: (i) how to effectively model containment relationships between arbitrary robot geometries and free regions through rigorous mathematical formulations, and (ii) how to develop effective motion planning strategies with safety assurance in unknown cluttered environments by utilizing these geometric relationships. To address these challenges, this dissertation investigates geometric relationships between general shapes described by polynomial sets and leverages polynomial optimization theory to model precise spatial constraints between robot geometries and free regions. By employing semidefinite relaxation techniques, we render these geometric constraints computationally tractable while preserving certifiable safety guarantees. Through the integration of conic programming solvers with nonlinear programming techniques, motion planning problems incorporating the developed safety constraints can be efficiently solved for both reactive control and trajectory planning through sequences of free regions. We validate our algorithms through comprehensive simulations and real-world experiments in complex environments. Results demonstrate that our polynomial optimization-based approach successfully provides certifiable safety guarantees while achieving real-time computational performance, enabling robots to navigate complex unknown environments with accurate geometric modeling and robust collision avoidance capabilities. 
653 |a Simulation 
653 |a Integer programming 
653 |a Optimization techniques 
653 |a Planning 
653 |a Graph representations 
653 |a Real time 
653 |a Robots 
653 |a Decomposition 
653 |a Linear programming 
653 |a Connectivity 
653 |a Polynomials 
653 |a Visualization 
653 |a Geometry 
653 |a Robotics 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273626645/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273626645/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://doi.org/10.14711/thesis-hdl152530