Numerical modeling and performance optimization of all inorganic Pb free novel NaSnCl3 based perovskite solar cells via SCAPS-1D framework

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 41709-41729
Autor principal: Abdullah, Muhammad Irsyad
Otros Autores: Oza, Virang, Kaur, Ravneet, Sudhamsu, Gadug, Ramawat, Himanshu, Mewara, D., Manchanda, Rachit, Mehta, Ankush, Bhowmik, Abhijit, Bukate, Bethelehem Burju
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The Lead (Pb) free all inorganic perovskite solar cells (PSCs) are garnering prominent interest in place of conventional organic-inorganic lead halide-based PSCs owing to hazardous nature of Pb and volatile virtue of organic components. In that quest, novel NaSnCl3 perovskite is explored with anticipation of synergetic intermingling of high-performance, stability and cost-effectiveness. Current work elaborates numerical modeling of glass/ITO/WS2/NaSnCl3/CuO/metal-contact configured PSCs by SCAPS-1D framework where WS2 and CuO act as charge-transport layers. Performance of NaSnCl3 based PSCs is numerically optimized by tuning various input parameters. Variation in thickness of NaSnCl3 layer from 300 nm to 1500 nm leads to boost efficiency (η) of devices from 10.82% to 12.54% and short-circuit current–density (Jsc) from 24.37 to 28.94 mA/cm2. Increment in defect density from 1012 cm−3 to 1016 cm−3 induced reduction in open circuit voltage (Voc) from 552.91 to 283.96 mV. Acceptor concentration of NaSnCl3 layer played crucial role in enhancement of performance of PSCs since Voc and η are enhanced from 550 mV to 850 mV and from 12.54 to 18.57%, respectively with increment in doping density. At optimized conditions, designed PSC devices showed the elevated efficiency of 25.04% which demonstrated tremendous potential of NaSnCl3 perovskites in futuristic PV applications.
ISSN:2045-2322
DOI:10.1038/s41598-025-25714-w
Fuente:Science Database