Fusing remote and social sensing data for flood impact mapping

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:AI Magazine vol. 45, no. 4 (Dec 1, 2024), p. 486-502
מחבר ראשי: Akhtar, Zainab
מחברים אחרים: Qazi, Umair, El‐Sakka, Aya, Sadiq, Rizwan, Ofli, Ferda, Imran, Muhammad
יצא לאור:
John Wiley & Sons, Inc.
נושאים:
גישה מקוונת:Citation/Abstract
Full Text
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
תיאור
Resumen:The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state‐of‐the‐art natural language processing and computer vision models to identify flood exposure, ground‐level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real‐world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground‐truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard‐hit districts and enhancing disaster response.
ISSN:0738-4602
2371-9621
DOI:10.1002/aaai.12196
Fuente:ABI/INFORM Global