A Non-Intrusive DSMC-FEM Coupling Method for Two-Dimensional Conjugate Heat Transfer in Rarefied Hypersonic Conditions
Guardado en:
| Publicado en: | Aerospace vol. 12, no. 11 (2025), p. 1021-1038 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Accurate conjugate heat transfer (CHT) analysis is critical to the thermal management of hypersonic vehicles operating in rarefied environments, where non-equilibrium gas dynamics dominate. While numerous sophisticated CHT solvers exist for continuum flows, they are physically invalidated by rarefaction effects. This paper presents a novel partitioned coupling framework that bridges this methodological gap by utilizing the preCICE library to non-intrusively integrate the Direct Simulation Monte Carlo (DSMC) method, implemented in SPARTA, with the finite element method (FEM) via FEniCS for high-fidelity simulations of rarefied hypersonic CHT. The robustness and accuracy of this approach are validated through three test cases: a quasi-1D flat plate benchmark confirms the fundamental coupling mechanism against a reference finite difference solution; a 2D flat-nosed cylinder demonstrates the capability of the framework to handle highly non-uniform heat flux distributions and resolve the ensuing transient thermal response within the solid; finally, a standard cylinder case confirms the compatibility with curved geometries and its stability and accuracy in long-duration simulations. This work establishes a validated and accessible pathway for high-fidelity aerothermal analysis in rarefied gas dynamics, effectively decoupling the complexities of multi-physics implementation from the focus on fundamental physics. |
|---|---|
| ISSN: | 2226-4310 |
| DOI: | 10.3390/aerospace12111021 |
| Fuente: | Advanced Technologies & Aerospace Database |