A Non-Intrusive DSMC-FEM Coupling Method for Two-Dimensional Conjugate Heat Transfer in Rarefied Hypersonic Conditions

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Aerospace vol. 12, no. 11 (2025), p. 1021-1038
Váldodahkki: Cao Ziqu
Eará dahkkit: Ma Chengyu
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3275489478
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12111021  |2 doi 
035 |a 3275489478 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Cao Ziqu 
245 1 |a A Non-Intrusive DSMC-FEM Coupling Method for Two-Dimensional Conjugate Heat Transfer in Rarefied Hypersonic Conditions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate conjugate heat transfer (CHT) analysis is critical to the thermal management of hypersonic vehicles operating in rarefied environments, where non-equilibrium gas dynamics dominate. While numerous sophisticated CHT solvers exist for continuum flows, they are physically invalidated by rarefaction effects. This paper presents a novel partitioned coupling framework that bridges this methodological gap by utilizing the preCICE library to non-intrusively integrate the Direct Simulation Monte Carlo (DSMC) method, implemented in SPARTA, with the finite element method (FEM) via FEniCS for high-fidelity simulations of rarefied hypersonic CHT. The robustness and accuracy of this approach are validated through three test cases: a quasi-1D flat plate benchmark confirms the fundamental coupling mechanism against a reference finite difference solution; a 2D flat-nosed cylinder demonstrates the capability of the framework to handle highly non-uniform heat flux distributions and resolve the ensuing transient thermal response within the solid; finally, a standard cylinder case confirms the compatibility with curved geometries and its stability and accuracy in long-duration simulations. This work establishes a validated and accessible pathway for high-fidelity aerothermal analysis in rarefied gas dynamics, effectively decoupling the complexities of multi-physics implementation from the focus on fundamental physics. 
653 |a Direct simulation Monte Carlo method 
653 |a Finite element method 
653 |a Finite volume method 
653 |a Investigations 
653 |a Fluid dynamics 
653 |a Physics 
653 |a Decoupling 
653 |a Heat flux 
653 |a Gas dynamics 
653 |a Heat transfer 
653 |a Numerical analysis 
653 |a Cylinders 
653 |a Computer simulation 
653 |a Rarefied gases 
653 |a Vehicles 
653 |a Thermal response 
653 |a Coupling 
653 |a Rarefied gas dynamics 
653 |a Accuracy 
653 |a Simulation 
653 |a Gases 
653 |a Temperature 
653 |a Flexibility 
653 |a Flat plates 
653 |a Rarefaction 
653 |a Thermal management 
653 |a Hypersonic vehicles 
653 |a Continuum flow 
653 |a Monte Carlo simulation 
653 |a Conjugates 
700 1 |a Ma Chengyu 
773 0 |t Aerospace  |g vol. 12, no. 11 (2025), p. 1021-1038 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275489478/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275489478/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275489478/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch